Chevron Left
Back to Convolutional Neural Networks in TensorFlow

Learner Reviews & Feedback for Convolutional Neural Networks in TensorFlow by DeepLearning.AI

6,626 ratings
1,031 reviews

About the Course

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This course is part of the upcoming Machine Learning in Tensorflow Specialization and will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 2 of the TensorFlow Specialization, you will learn advanced techniques to improve the computer vision model you built in Course 1. You will explore how to work with real-world images in different shapes and sizes, visualize the journey of an image through convolutions to understand how a computer “sees” information, plot loss and accuracy, and explore strategies to prevent overfitting, including augmentation and dropout. Finally, Course 2 will introduce you to transfer learning and how learned features can be extracted from models. The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization....

Top reviews

Nov 12, 2020

A really good course that builds up the knowledge over the concepts covered in Course 1. All the ideas are applicable in real world scenario and this is what makes the course that much more valuable!

Mar 14, 2020

Nice experience taking this course. Precise and to the point introduction of topics and a really nice head start into practical aspects of Computer Vision and using the amazing tensorflow framework..

Filter by:

676 - 700 of 1,024 Reviews for Convolutional Neural Networks in TensorFlow

By Jeff L J D

Nov 5, 2020


By Josef N

Jun 19, 2020


By Ben B

May 6, 2020


By Aji S

May 3, 2020


By Alivia Z

Apr 25, 2021


By Roberto

Apr 16, 2021


By Ahmad H N

Mar 26, 2021


By Indah D S

Mar 19, 2021


By tg l

Jan 17, 2021


By Johnnie W

Sep 22, 2020



Jul 25, 2020


By Rifat R

Jun 7, 2020



May 29, 2020


By Amit K

May 13, 2020


By Nho N

Mar 17, 2020


By zhenzhen w

Nov 18, 2019


By Jurassic

Sep 6, 2019


By 林韋銘

Aug 20, 2019


By Islam U

Jan 24, 2021

The course definitely teaches interesting techniques (Dropout, Transfer Learning) and tools (use of ImageDataGenerator). What i think would be an improment point is further tips on how to actually achieve a state of art (or really high quality) models. For example for full Cats and Dogs dataset from Kaggle, there was an optional ungraded work that asked to achieve over 99.9% accuracy on both training/validated datasets. It would be great if some tips on how to achieve this would be given. Maybe some discussion of network architectures that can achieve this, as this subject is not always covered, while it plays probably a dominant role whether you make it or break it. Otherwise, i liked the course and thanks for wonderfull explanations.

P.s. week 4 final graded task is structured suboptimally, so maybe it can be reviewed, as many people struggling with many sorts of errors.

By Xiaolong L

Feb 20, 2021

In general a very good course. But it seems that the instructor could have put more work into the weekly projects. For example, the weekly project for the 3rd week is almost the same as that of week 2. Also, one of the week boasted that the project involves training on the full dogs vs cats dataset but it is actually still just a subset. I was able to run on the full data set by downloading and loading them manually. I can see that the platform has concerns on the computational resources usage, but it should at least be accurate on in the project descriptions.

By João A J d S

Aug 3, 2019

I think I might say this for every course of this specialisation:

Great content all around!

It has some great colab examples explaining how to put these models into action on TensorFlow, which I'm know I'm going to revisit time and again.

There's only one thing that I think it might not be quite so good: the evaluation of the course. There isn't one, apart from the quizes. A bit more evaluation steps, as per in Andrew's Deep Learning Specialisation, would require more commitment from students.

By Anand H

Sep 12, 2019

One challenge i have faced is with deploying the trained models. I find very little coverage on that across courses. It's one thing to save a model.h5 or model.pb. It would be nice if you can add a small piece on deployment of these models using TF Serving or something similar. There is some distance between just getting these files outputted and deploying. TF documentation is confusing about some of these things. Would be nice if you can include a module on that.

By AbdulSamad M Z

Aug 1, 2020

Great course! Builds on the concepts of Course 1 in this Specialization although the course can be taken without having completed Course 1. Concepts are explained in a super clear and engaging way and the hands-on exercises give you the experience you need to become proficient. The course covers plenty of practical concepts including some pitfalls for practitioners to avoid, but the theoretical concepts are covered less than I expected.

By Mikhail C

Apr 6, 2020

Content was clear building upon each topic however the lab submissions need work. Most of the "write your own code" complexities and issues where around data wrangling, directories, and memory efficient code which was not too relevant to the main learning objectives. I spent 90% of the coding exercises fixing or waiting for the data prep functions instead of experimenting with the different layers, dropouts, augmentation values.

By Henrique G

Jun 24, 2020

The course is well-paced and the instructor provides good coverage on the main topics on Convolutional Neural Networks. I'd recommend watching Andrew Ng videos from the Deep Learning specialization for a better understanding of topics like dropout, transfer learning, and optimization methods. The final exam is quite difficult as you need a lot of trial and error to get things to work properly - just like the real messy world.