Chevron Left
Back to Convolutional Neural Networks

Learner Reviews & Feedback for Convolutional Neural Networks by DeepLearning.AI

4.9
stars
41,313 ratings

About the Course

In the fourth course of the Deep Learning Specialization, you will understand how computer vision has evolved and become familiar with its exciting applications such as autonomous driving, face recognition, reading radiology images, and more. By the end, you will be able to build a convolutional neural network, including recent variations such as residual networks; apply convolutional networks to visual detection and recognition tasks; and use neural style transfer to generate art and apply these algorithms to a variety of image, video, and other 2D or 3D data. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Top reviews

RK

Sep 1, 2019

This is very intensive and wonderful course on CNN. No other course in the MOOC world can be compared to this course's capability of simplifying complex concepts and visualizing them to get intuition.

AR

Jul 11, 2020

I really enjoyed this course, it would be awesome to see al least one training example using GPU (maybe in Google Colab since not everyone owns one) so we could train the deepest networks from scratch

Filter by:

276 - 300 of 5,457 Reviews for Convolutional Neural Networks

By Glenn P

Dec 10, 2017

Another excellent course. Convolutional Neural Networks is no longer a mystery. I like the fact that Andrew doesn't teach this as an academic class but has a very practical approach that can be applied right way. He lets you know the strengths and weakness of each of the NN and gives his personal opinion as well.

By Yijie

May 16, 2018

It is a great course that covers most part of Convolutional Neural Networks. I have learned a lot from it. Thanks Andrew! Only one suggestion: we have learned dropout and the batch norm in previous courses. Because they are such important tricks, it would be better if you could cover how they can be used in CNN.

By Ahmad B E

Nov 4, 2017

Greatest cores for me till now on deep learning. I recommend it for deep learner or computer vision student. The best thing in this course is that it is very practical and up to date, and full of research papers of algorithms that Google and Facebook currently uses. Thanks a lot Prof Andrew Ng you are the best.

By Yuri C

Feb 10, 2021

What a ride! I am not even very much into Deep Computer Vision, but this course made me finally understand how tensors algebra works and how they flow in the network. Andrew is just able to put it in so simple terms and in a very accessible way that just for that the course is already very remarkable! Congrats!

By Parab N S

Aug 25, 2019

An Excellent Course to make people understand Convolutional Neural Networks in good depth and with ease. The detailed understanding of the major Convolutional models like YOLO and ResNet is like an icing on the cake. I would like to thank Professor Andrew N.G. and his team for developing this wonderful course.

By Alejandro M

Aug 5, 2019

Muy bueno para empezar a entender los conceptos de las capas convolucionales. Luego muestra modelos profundos como AlexNet, VGG16, ResNET, Inception que se pueden entrenar usando transfer learning. La parte de detección de objetos es la mas complicada. La parte que más me gusto fue la de reconocimiento facial.

By Jeffrey T

Mar 30, 2020

The intuition and examples made this course easy to understand and learn. I loved how Andrew decomposed current published papers into an easy to understand format. All of the important points to remember were highlighted without wasting time on the minutia. Thanks for all the hard work put into the course.

By H A H

Sep 12, 2020

I enjoyed a lot in this course...who wants to know how to build the CNN model...then this course is absolutely for them..they should try 100% this course. this course gives u insights into how to build your CNN model this one is I think the best course for that...thank u sir for this type of good content...

By Carlos A L P

Jan 4, 2021

Nice exploration of CNN theory covering theory and Python exercises through different algorithms. One recommendation would be update broken links and re-write comments in code as sometimes it is not clear what variable or what is needed to complete the required functionality, specially on ungraded exercises

By MBOUOPDA M F

Jul 16, 2020

This course explains the details of CNNs with a great simplicity. It also presents some state of the art CNN architectures with their ideas very clearly. Finally the assignments allow to implement several CNNs and also show how transfer learning is used to perform face recognition and neural style transfer.

By Alexandre M

Nov 29, 2019

One of the most important courses in the Deep Learning Specialization in my opinion. Good content, enjoyed the homework, lots of details for beginners and extra resources for more advance content. Would definitely recommend for anyone interested in working in Machine Learning especially in Computer Vision.

By Avineil J

Dec 4, 2017

Exceptional Course. Learnt a lot from it. Takes a different approach to teaching than other courses in the sense that more focus is on applications rather than training of models for which a GPU cluster is a must. Thanks Andrew Ng and his team for the wonderful course. Looking forward to sequence models :)

By Samit H

Aug 2, 2020

This is the course I enjoyed the most among the Deep Learning Specialization Course threads. Seems very practical to me and I learned a lot about CNN. A few more detailed practice in notebook problems could've made things more interesting. Many thanks to Andrew Ng for making such wonderful lecture videos.

By OMAL P B

Apr 10, 2020

An amazing course to get an advance knowlege and practise "Convolutional Neural Networks". Andrew Sir makes the math and concepts behind the scenes very easy to understand. The course is easy to follow as it gradually moves from the basics to more advanced topics, building gradually.

Highly recommended.

By Jizhou Y

Mar 7, 2019

Professor Andrew is really knowledgeable. The lecture videos he makes are really helpful for me. I really learn a lot from them. Also, the recommended learning materials such as academic paper he recommend are really useful for me if I want to further my learning on the residual network or YOLO algorithm.

By Quentin M

Aug 1, 2021

Fascinating course, as usual Prof. Ng gives fantastic explanations and breaks it all down into easy to understand fragments. His style is really engaging and he is so encouraging. There are some amazing applications in the programming examples that you'll want to play with long after the course is over.

By J.-F. R

Feb 18, 2020

Great course by Prof Ng. I had taken his Machine Learning course a few years ago, so expected high standards of content and assignment preparation - I was not disappointed. Staff is very responsive and helpful in forums as well. I highly recommend it. Taken as part of the DeepLearning specialization.

By George Z

Aug 29, 2019

Exceptional course taking you into the real world of deep learning by exploring new concepts and classical architectures like LeNet-5, AlexNet, VGG-16, ResNet, R-CNN, YOLO, FaceNet and Style Transfer that propelled deep learning in new heights. Loved every part of it (minus some hiccups with the grader).

By Mukesh K

Aug 29, 2019

The course is just awesome both in terms of content that is being taught in the lectures and the assignments. Though, I think the last week is not that much important for the industry purpose but definitely it is good for those who are interested in non-industrial use of tensor flow and neural networks.

By Yong B S

Jul 26, 2020

it's a wonderful course to learn CNN. thanks to the Prof. Ng for his excellent teaching. the programming assignment is clearly explained and structured. it is easy for student to follow and understand what they are doing. I am really enjoyed the learning. again, thank you very much Prof. Andrew Ng !!!

By Ignacio H M

Mar 26, 2020

I finally understand YOLO! This course has the best material available on CNNs. Even though I come from a MSc in Computer Vision and Machine Learning, we didn't have enough time to fully cover 'complex' architectures such as YOLO. Thanks to this course I feel more up to date in the Deep Learning field.

By Victor F

Apr 8, 2020

Once more Andrew steps up as a brilliant teacher. I'm a biologist looking to improve my data science skills to better tackle medical imaging problems. I'm confident to say Andrew is the reason I'm going to make a difference in low resource communities in the future. Thank you, Andrew, you are awesome.

By Scott H

Feb 5, 2018

I really enjoyed this course. I found it pretty approachable. FWIW, I'd taken Andrew's original ML class, but then skipped 1,2, and 3 of the new one (and jumped into 4) The course really holds your hand, so be prepared to force yourself to try some of this on your own to be sure you've understood it.

By Harsh B

Nov 6, 2017

This course is intended for ML learners who have background knowledge of NNs and want to enhance their scope of knowledge in CNNs. Prof. Andrew has been an amazing instructor. The material used in this course is mostly based on Tensorflow, so make sure to have a bit of prior knowledge in Tensorflow.

By Kevin C

Oct 28, 2020

El mejor curso hasta ahora (me falta el de RNN). Los temas son bastante interesantes y sus aplicaciones hacen que el curso sea muy bueno, tanto en los cuestionarios como en los ejercicios de programación. Quizás sea necesario el feedback en los cuestionarios para saber por qué algo está bien o mal.