154,905 recent views

## 50%

started a new career after completing these courses

## 50%

got a tangible career benefit from this course

#### Shareable Certificate

Earn a Certificate upon completion

#### 100% online

Start instantly and learn at your own schedule.

#### English

Subtitles: English

### Skills you will gain

Finite DifferencesC++C Sharp (C#) (Programming Language)Matrices

## 50%

started a new career after completing these courses

## 50%

got a tangible career benefit from this course

#### Shareable Certificate

Earn a Certificate upon completion

#### 100% online

Start instantly and learn at your own schedule.

#### English

Subtitles: English

## Syllabus - What you will learn from this course

Content Rating96%(2,936 ratings)
Week
1

## Week 1

6 hours to complete

## 1

6 hours to complete
11 videos (Total 200 min), 2 readings, 1 quiz
11 videos
01.02. Introduction. Linear elliptic partial differential equations - II 13m
01.03. Boundary conditions 22m
01.04. Constitutive relations 20m
01.05. Strong form of the partial differential equation. Analytic solution 22m
01.06. Weak form of the partial differential equation - I 12m
01.07. Weak form of the partial differential equation - II 15m
01.08. Equivalence between the strong and weak forms 24m
01.08ct.1. Intro to C++ (running your code, basic structure, number types, vectors) 21m
01.08ct.2. Intro to C++ (conditional statements, “for” loops, scope) 19m
01.08ct.3. Intro to C++ (pointers, iterators) 14m
"Paper and pencil" practice assignment on strong and weak forms2h
1 practice exercise
Unit 1 Quiz8m
Week
2

## Week 2

3 hours to complete

## 2

3 hours to complete
14 videos (Total 202 min)
14 videos
02.01q. Response to a question 7m
02.02. Basic Hilbert spaces - I 15m
02.03. Basic Hilbert spaces - II 9m
02.04. The finite element method for the one-dimensional, linear, elliptic partial differential equation 22m
02.04q. Response to a question 6m
02.05. Basis functions - I 14m
02.06. Basis functions - II 14m
02.07. The bi-unit domain - I 11m
02.08. The bi-unit domain - II 16m
02.09. The finite dimensional weak form as a sum over element subdomains - I 16m
02.10. The finite dimensional weak form as a sum over element subdomains - II 12m
02.10ct.1. Intro to C++ (functions) 13m
02.10ct.2. Intro to C++ (C++ classes) 16m
1 practice exercise
Unit 2 Quiz6m
Week
3

## Week 3

7 hours to complete

## 3

7 hours to complete
14 videos (Total 213 min)
14 videos
03.02. The matrix-vector weak form - I - II 17m
03.03. The matrix-vector weak form - II - I 15m
03.04. The matrix-vector weak form - II - II 13m
03.05. The matrix-vector weak form - III - I 22m
03.06. The matrix-vector weak form - III - II 13m
03.06ct.1. Dealii.org, running deal.II on a virtual machine with Oracle VirtualBox12m
03.06ct.2. Intro to AWS, using AWS on Windows24m
03.06ct.2c. In-Video Correction3m
03.06ct.3. Using AWS on Linux and Mac OS7m
03.07. The final finite element equations in matrix-vector form - I 22m
03.08. The final finite element equations in matrix-vector form - II 18m
03.08q. Response to a question 4m
03.08ct. Coding assignment 1 (main1.cc, overview of C++ class in FEM1.h) 19m
1 practice exercise
Unit 3 Quiz6m
Week
4

## Week 4

5 hours to complete

## 4

5 hours to complete
17 videos (Total 262 min)
17 videos
04.02. The pure Dirichlet problem - II 17m
04.02c. In-Video Correction 1m
04.03. Higher polynomial order basis functions - I 23m
04.03c0. In-Video Correction 57s
04.03c1. In-Video Correction 34s
04.04. Higher polynomial order basis functions - I - II 16m
04.05. Higher polynomial order basis functions - II - I 13m
04.06. Higher polynomial order basis functions - III 23m
04.06ct. Coding assignment 1 (functions: class constructor to “basis_gradient”) 14m
04.07. The matrix-vector equations for quadratic basis functions - I - I 21m
04.08. The matrix-vector equations for quadratic basis functions - I - II 11m
04.09. The matrix-vector equations for quadratic basis functions - II - I 19m
04.10. The matrix-vector equations for quadratic basis functions - II - II 24m
04.11. Numerical integration -- Gaussian quadrature 13m
04.11ct.1. Coding assignment 1 (functions: “generate_mesh” to “setup_system”) 14m
04.11ct.2. Coding assignment 1 (functions: “assemble_system”) 26m
1 practice exercise
Unit 4 Quiz8m

• Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

• You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.

• Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You’ll be prompted to complete an application and will be notified if you are approved. Learn more.

• You will need computing resources sufficient to install the code and run it. Depending on the type of installation this could be between a 13MB download of a tarred and gzipped file, to 45MB for a serial MacOSX binary and 192MB for a parallel MacOSX binary. Additionally, you will need a specific visualization program that we recommend. Altogether, if you have 1GB you should be fine. Alternately, you could download a Virtual Machine Interface.

• You will be able to write code that simulates some of the most beautiful problems in physics, and visualize that physics.

• You will need to know about matrices and vectors. Having seen partial differential equations will be very helpful. The code is in C++, but you don't need to know C++ at the outset. We will point you to resources that will teach you enough C++ for this class. However, you will need to have done some programming (Matlab, Fortran, C, Python, C++ should all do).

• Apart from the lectures, expect to put in between 5 and 10 hours a week.

• This Course doesn't carry university credit, but some universities may choose to accept Course Certificates for credit. Check with your institution to learn more. Online Degrees and Mastertrack™ Certificates on Coursera provide the opportunity to earn university credit.

More questions? Visit the Learner Help Center.