Back to Mathematics for Machine Learning: Linear Algebra

4.7

stars

7,574 ratings

•

1,513 reviews

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before.
At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

Dec 23, 2018

Professors teaches in so much friendly manner. This is beginner level course. Don't expect you will dive deep inside the Linear Algebra. But the foundation will become solid if you attend this course.

Aug 26, 2018

Great way to learn about applied Linear Algebra. Should be fairly easy if you have any background with linear algebra, but looks at concepts through the scope of geometric application, which is fresh.

Filter by:

By Akshita B

•Nov 11, 2018

I feel this course is easy and challenging in its own way. It didn't overburden me but at the same time it made me feel that I am learning something every week. Also, they keep revising the concepts as they move forward so it helps retaining the concepts too. Cheers! I really liked the course.

By Shraavan S

•Nov 10, 2018

The interpretations given for matrix multiplication and change of basis are presented in simple terms which are easy to understand. I hadn't used Python earlier, but the programming assignments (especially the PageRank algorithm implementation) have motivated me to start learning the language.

By Moez B

•Jun 19, 2019

Excellent course with top-notch videos and instructors. I highly recommend it even if you are not going into data science. The approach to teaching eigenvalues and eigenvectors in particular is very helpful for any students struggling with these concepts in a classical linear algebra course.

By Hermes J D R P

•Jun 08, 2019

A great course to learn the fundamentals of Linear Algebra for Machine Learning. The programming assignments in Python were the best part of the course because when I studied Algebra at my university I only did boring manual exercises. I recommend this course completely, you'll enjoy it.

By 刘佳欣

•May 23, 2019

This is an incredibly great course for linear algebra. Thank you so much for the neat and elegant explanation! Highly recommend it if you focus more on calculation without knowing the meaning behind matrices and vectors in your past linear algebra journey. Thanks a lot dear professors!!

By SUJITH V

•Sep 09, 2018

This course has exceeded my expectations in some ways. I was just trying to get a refresher in basics of Linear Algebra. The intuitive understandings presented in the course were really helpful and gave me a better understanding of the concepts which I only learned mechanically before.

By Jack C

•Apr 06, 2018

Great course, well presented videos and challenging but engaging content. Great high level view of linear algebra to give you a starting point for other courses. May be useful to have some machine learning knowledge before taking - Andrew Ng's course would serve as a good counterpoint.

By Aleix L M

•Nov 28, 2019

After taking this course I can safely say that I did not understand Linear Algebra before. This course introduces basic concepts useful for machine learning and it gives a very intuitive view on abstract concepts that I had trouble understanding before. I would totally recommend it.

By Satyajit S

•Mar 18, 2018

Great introductory course. Linear Algebra is quite often the most poorly taught/understood subject in college mathematics.This course has a done a great job in stressing on the core concepts without focusing on the computational details which happens in typical linear algebra courses

By Alexander Z

•Aug 25, 2019

Very much recommend this course for absolute beginners seeking to refresh/learn math required for machine learning.

Don't be afraid to start and focus on learning instead of going through the material.

Practice exercise you've done several times and return to your notes. Good luck!

By Alok N

•Apr 14, 2020

Great course! Linear algebra is a very vast subject. This course helped me getting the idea of topics I need in machine learning algorithms. This course is very helpful in revisiting the linear algebra to those who have taken this subject in his/her college in very short time.

By Daozhang W

•Jul 12, 2019

It's a worth-taking course. But you'd better have some linear algebra background. Like me, a student in China, we learn all things with out geometric insight, it will be very difficult for you to take the course through out.

All in all, worth-taking. Give me many fresh airs.

By Dan L

•Sep 29, 2019

I actually studied Maths at undergrad and was using this as a catchup after many years - it wasn't taught nearly anywhere near as well as this. More lecturers should focus on the concepts first, and then the formulae to give context. A great course, highly recommended!

By Anubhab G

•Jun 06, 2018

Well-paced, engaging and highly interesting course content. This course totally gives a new dimension to linear algebra. The fact that mathematical examples are implemented through programming exercises, really strengthens the concepts and makes it even more interesting.

By Maged F Y A

•May 01, 2018

I would like to thank the instructors for their exceptional work. They are teaching mathematics with the aid of visualizations, which is not common within ordinary math classes. This way assists students to understand the physical interpretation of mathematical concepts.

By Phuong A N

•Jul 23, 2020

It is quite hard course, especially coding.

the practice tests are very useful. Every test provides description which is very useful to review the lecture. Tests are challenging but if we make effort and invest time to think, read the instruction carefully, we can pass.

By Henry N

•Apr 05, 2020

Lectures are well-paced (although I was familiar with basics of working with vectors and matrices from high school mathematics). The assignments and quizzes were pitched at the right difficulty, just hard enough to be a challenge but not so hard as to be disheartening.

By Dariusz P G

•Mar 10, 2019

What an excellent lecturer.

I just wish that my mathematics teacher at school had had a tenth of the ability to impart knowledge.

This is a fantastic course and I will be doing the specialization later when I get some free time.

Thank you for a fantastic course.

Dariusz

By Diogo J A P

•Jul 22, 2019

This is an awesome course! You probably were like me, with a foundation in maths shaky due to poor understanding of the underlying principles. This course re-centers math around intuition, making it much easier to understand and apply the concepts with confidence.

By Andi S

•Dec 23, 2019

I really like the approach of this course: build the intuition of the core concepts with an easy language and loads of examples. This has helped me a lot to understand finally the eigenvector and eigenvalues, for example. I strongly recommend to take this course.

By Prateek S

•Jun 25, 2020

This was one of the best courses I have ever had. The courses structure was awesome and the instructors were very clear with what they were teaching. The assignments were good. Anyone with a fair understanding of high school algebra should be able to understand.

By SINGH S

•May 24, 2020

I would like to say that this was one of the best courses that I've learned online during these difficult times of COVID-19 Pandemic. the teachers professor David Dye and Professor Samuel J Cooper were very friendly in teaching , all my concepts got cleared.

By Anna U

•Jan 14, 2020

An excellently simple explanation of concepts of linear algebra. Applause for lector. I really liked this course and found it very useful for those newbies in machine learning like myself. I recommend this course to all my friends and others interested in.

By PRANAD W

•Jul 01, 2020

This course has an amazing way of teaching. So u understand the concepts of mathematics that was seeming harder to me before i applied for this course. If you are beginner at Machine learning and worried about mathematics you must go through this course.

By Rishabh T

•Aug 06, 2020

This is one of the best courses I have seen in coursera. The material was good and instructors were excellent. The subject and topics were explained in a very simple and interesting manner making it very easy to understand and also fun at the same time.

- AI for Everyone
- Introduction to TensorFlow
- Neural Networks and Deep Learning
- Algorithms, Part 1
- Algorithms, Part 2
- Machine Learning
- Machine Learning with Python
- Machine Learning Using Sas Viya
- R Programming
- Intro to Programming with Matlab
- Data Analysis with Python
- AWS Fundamentals: Going Cloud Native
- Google Cloud Platform Fundamentals
- Site Reliability Engineering
- Speak English Professionally
- The Science of Well Being
- Learning How to Learn
- Financial Markets
- Hypothesis Testing in Public Health
- Foundations of Everyday Leadership

- Deep Learning
- Python for Everybody
- Data Science
- Applied Data Science with Python
- Business Foundations
- Architecting with Google Cloud Platform
- Data Engineering on Google Cloud Platform
- Excel to MySQL
- Advanced Machine Learning
- Mathematics for Machine Learning
- Self-Driving Cars
- Blockchain Revolution for the Enterprise
- Business Analytics
- Excel Skills for Business
- Digital Marketing
- Statistical Analysis with R for Public Health
- Fundamentals of Immunology
- Anatomy
- Managing Innovation and Design Thinking
- Foundations of Positive Psychology