While the information from this course was awesome I would've liked some hand on projects to get the information running. Nonetheless, the two simulation task were the best (more would've been neat!).
I learned so many things in this module. I learned that how to do error analysis and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.
By Severus
•This is the one that talks a lot about how to struture DL projects. And many methods have been taught in this course including focusing on the error control, transfer learning, multi-task learning. After learning these methods, tuning a DL project or starting a DL project will be a lot easier.
By Andrei N
•The content, examples, assignments, and quizzes are thoroughly developed. All the courses of the specialization share the same notation and lead a student from basic concepts to complex ones helping to develop an intuition on each step. The best course on topic of Deep Learning one could find.
By Neil O
•This is a unique course that provides invaluable perspective on how to direct a deep learning project. Its value is derived from understanding the performance metrics ( the data about the data) and acting in a data driven way. Anyone in charge of a deep learning project should take this class.
By Diwakar P
•This is really a greate course taking ont into the deep thoughts of how to structure deep learning projects. I teaches use how to analysis the various errors like human/bayes level error, training error, traing-dev error, dev error & test error, I learnt to anaylise errors and take decisions.
By Md R H M
•The lectures are arranged in a concise manner with only the necessary details. This is a shorter course than the other courses, but I learned a lot about different strategies of ML. The case study is also of top-notch which helped me to introduce to the application and various aspects of DL.
By Mahmoud S E
•It has the best practice tips and top secret advises for Machine learning.
It really simple and clear. I love it too much.
Especially, the exams, A lot of effort is done on it. And the instructors notice which best way to absorb this deep concepts in this course by flight simulation techniques
By Virendra K Y
•Thank you so much team and NG sir. What a simple explanation of everything. Love you guys and god bless you and your team sir. Honestly, no word to say how simply NG sir explains all the concepts. Hard work team. Love from India. and do yoga to boost your immune and stay safe from Covid19.
By Charles B
•Covers some interesting points, particularly around introducing external data to your training set that doesn't match the distribution of the dev/test sets. Andrew Ng offers practical advice for running projects using Deep Learning techniques and how they differ from traditional approaches.
By Tanay G
•I was sceptical at first, it seemed that the course would just teach a lot of theory which won't be relevant. I am happy to say that I was wrong, the course gave me a better understanding of how to take various decisions for a particular machine learning problem. I liked this course a lot.
By Akash B
•It teaches the decision making process whenever you're working on a real- world probelm. You should grasp all the ideas into your brain very well. I think this is very important as per in the field of deeplearning.
This course is very rare, and it provides best case scenarios to test with.
By Haoxuan Q
•I love this course very much and I would strongly recommend this course to other DL colleague. It is truly that DL is a highly empirical process which needed to be more systematic. In this course, I have learned many methods to make DL more controllable and predictable. Nice Job! Thanks!
By K R
•Well, once again I'm so happy and very satisfied of the content proposed in this Course by Prof. Andrew Ng. Thanks a lot for this valuable content and for always making it easy to understand. I'm getting more and more knowledge in DL which happens to be very usefull for my Phd project.
By Pedro F d C
•In my experience with Machine learning, we usually spend more time checking the algorithm than checking the best distribution of our data. In this course, Professor Andrew teaches us the need and obligation to create a correct distribution of our data with examples from the real world.
By Mohd S A
•Extremely helpful for a beginner so as to think like a machine learning problem solver. I think there should be more quiz added to this course with scenario like given in two quiz. I have never enjoyed any course so much by taking same quiz again and again to get better understanding.
By Hiep P
•In the bloom of Deep Learning/Machine Learning industries, know how to build a project is more important and a priority to know what knowledges to build that project. Break the problems, take each step follow the guide and avoid common pitfalls in process, this course will satisfy you.
By Javier E
•this is definitely the best course i had taken. it has just 2 weeks, but it was the hardest. i will definitely come back to see the teachings here explained to check up if i'm thinking correctly so i don't make much mistakes in taking a direction in projects.
definitely recommended!!!
By Elena P
•The case study format for quizzes was highly effective in helping me uncovering gaps in my knowledge that I didn't know were there. I would have liked to see at least one more case study per week. One per week just wasn't enough.
Overall good course with a few minor video glitches.
By Carlos A B R
•I found this course really interesting because it gives many details on what path to follow to achieve better results not only depending on the amount of data we have but also taking into account some small details that can make a difference when starting machine learning projects.
By Dharam G
•A very well systematic approach explained, to structure ML projects.Can be grasped and implemented by anyone, let it be a beginner or some expert.Really liked the idea of case study in quiz. (Wait ! How about extending this idea into some coding exercise ? Would be some real fun !)
By Andrew M
•There is no coding in this course, but you learn a lot of how to design a Deep Learning Study. I learned a lot about the distribution of Training/Dev/Test sets and how to diagnose problems when a neural network is not performing as well as anticipated or if it is performing well.
By Tyler K
•Outstanding course. Many of the points made in this course mirror the hard earned knowledge I gained back when I worked on Dynamic Rank search engine focused neural networks.
This may end up being my favourite of the 5 courses but let's see if the last two have more math first. :)
By Alexios B
•This part of the specialization is short but it includes a lot of valuable information. Many of the tips are quite basic engineering best practices which most engineers should find natural, but some are very specific to deep learning and these are particularly useful to newcomers.
By Brad M
•This is truly some information you'll never get in a standard class setting; this is more similar to compiling years of ML experience into short packets of advice that will guide your decisions for years to come. Extremely helpful, and recommended for all deep learning engineers.
By WALEED E
•This course is really what any PhD would need to conduct his research in more time saving and efficient manner. It would be great if coding was accompanied (even if only running and watching results) to touch all aspects of analysis and suggested improvements could be visualized.
By Kanishk S
•To Andrew and team (mentors and organizers), I am glad I opted for this course! You guys give such great insight on approaching and solving a Deep Learning problem, I don't think I would have ever found a better introductory course on Neural Nets. Thank you so much, everyone!!!!