Chevron Left
Back to Structuring Machine Learning Projects

Learner Reviews & Feedback for Structuring Machine Learning Projects by DeepLearning.AI

4.8
stars
44,769 ratings
5,073 reviews

About the Course

You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been taught elsewhere, and is drawn from my experience building and shipping many deep learning products. This course also has two "flight simulators" that let you practice decision-making as a machine learning project leader. This provides "industry experience" that you might otherwise get only after years of ML work experience. After 2 weeks, you will: - Understand how to diagnose errors in a machine learning system, and - Be able to prioritize the most promising directions for reducing error - Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance - Know how to apply end-to-end learning, transfer learning, and multi-task learning I've seen teams waste months or years through not understanding the principles taught in this course. I hope this two week course will save you months of time. This is a standalone course, and you can take this so long as you have basic machine learning knowledge. This is the third course in the Deep Learning Specialization....

Top reviews

AM
Nov 22, 2017

I learned so many things in this module. I learned that how to do error analysys and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

JB
Jul 1, 2020

While the information from this course was awesome I would've liked some hand on projects to get the information running. Nonetheless, the two simulation task were the best (more would've been neat!).

Filter by:

201 - 225 of 5,018 Reviews for Structuring Machine Learning Projects

By Mark Z

Jun 11, 2019

I've decided to take this course after seeing its feedback from other people and the comment which got me was the following: "This course is could be summarized as a machine learning master giving useful advice". I think it perfectly describes the course's content. This course is definitely worth investing time into.

By Dunitt M

Feb 10, 2019

Excelente curso, muy recomendado para quienes tienen una idea de Deep Learning pero con frecuencia se encuentran en situación que no saben cómo afrontar o cuál camino intentar primero. El conjunto de habilidades impartidas aquí no te harán un mejor programador, pero te ahorraran muchas horas de esfuerzo innecesario.

By Gaurav K

Sep 7, 2017

Amazing tips shared for structuring machine learning projects, which were ignored in most of the other ML books. Building a model is one thing, but tuning it to make it work better in the real world is more important which this course focuses.

Thanks Prof. Andrew Ng for the consistent support of spreading knowledge!

By Muhammad A

Aug 13, 2020

Although, this course of specialization was simple with no assignment still the case studies were quite informative. I would suggest to include a case study related to google machine learning for navigation and voice recognition. We youth can easily relate to this case study. Overall this course was a full package.

By Yuezhe L

Nov 19, 2018

This is a very helpful class. I have been working on machine learning projects for years. This course provides methods to systematically trouble shoot problems in a machine learning project. Despite all the samples are using neural networks, the methodology can be applied to improve other machine learning projects.

By Bernard O

Oct 24, 2018

Excellent course on managing through the thick of bias/variance tradeoffs. Been doing a lot just based on things I have picked up through experience, but this course puts a the quantitative rigor and discipline behind the art. The sections on transfer and end to end deep learning were eye opening sections for me.

By Gema P

Feb 25, 2018

This course is strategically very important so congrats on making it

I would add a programming assignment including transfer learning or multi-task learning implementation due to the multiple cases of use that are today in the industry.

Thanks again for making this Wonderfull material available to the community ^^

By BAZIL F

Dec 29, 2019

Very useful course for understanding nuances of AI and different useful techniques in strategizing the approaches. Extremely useful in architecting, designing and delivery of the complex solutions involving AI (even as a sub-component). Prof. Andrew Ng is always a pleasure and honor to learn from. Thank You Sir!

By Harvey Q

Sep 4, 2017

Really inspiring course, and UNIQUE. No other class, I think, provide these suggestions on the big question "what's next?" in ML projects. The videos are a bit weirdly sequenced. But they provide very systematic ways of project starting, data splitting, model evaluating, problem finding and tuning. Great course!

By Pedro B M

Feb 28, 2019

This a course on key practices one should have when developing a ML project. Once again Andrew Ng is very pedagogical, teaching sometimes complex concepts in a easy to understand and practical way. I particularly liked the case studies, where the learned concepts had to be put into practice for decision taking.

By Niyas M

Oct 29, 2017

What a great session! Full of practical advice and strategies to help you iterate fast. Prof. Andrew draws on his years of hands-on experience at top companies to put together the best practices for structuring your machine learning projects. This has been the most valuable course in this series for me so far!

By Nikhil K

Jul 9, 2020

super helpful! something that's really valuable in-terms of optimally organizing the thought process i should use to approach an issue i want to solve with Deep Learning.

also, the Quizzes in this course (in-particular) were very important for me because it helped ingrain the tenets of this course in my mind.

By Zebin C

May 18, 2019

In the course, I learned how to divide train set, dev set, and test set, and how to solve the problem of different distributions of train set and test set. Impressive is the transfer learning. Transfer learning is a very effective way to help me provide a completely different approach to solving new problems.

By Swapnil T

Mar 31, 2020

What can be better than this, a highly qualified and passionate individual explaining what he has observed and learnt from the mistakes of other professionals , those who themselves are one of the smartest brains so that we don't make mistakes or waste our time realizing that we were hitting something wrong.

By Vishnu V

Mar 8, 2020

Excellent course to understand the ML project pipeline and then to analyse the various problems that could pop up during an ML project. The tips and tricks that we obtain from this course to address those problems are really valuable and unmatched. It is truly one of its kind course from the master itself!

By Abhilash V

Sep 11, 2017

This is a good course to get a feel of real projects and insights on how to go about executing them.I got some good tips to approach a deeplearning project.I don't know if this is too short of a course but I would trust Andrew Ng if he thinks this is fine to get a sense of deep learning projects.

Thank you.

By Fahad S

Sep 6, 2018

The content is very unique and extremely insightful in how to structure a machine learning project. As a machine learning practitioner, I can personally vouch for the usefulness of the suggestions made by Andrew NG. Had I known all of this before, it would have saved me a lot of time on numerous projects.

By Tushar M

Mar 16, 2018

This is the best ML course I have taken so far. A lot of ideas around train/dev/test sets, bias variance trade-off and difference of data distributions between train and dev sets snapped into place for me. I am sure it will take me a while to internalize this content but I feel like I have found the path.

By Edward D

Oct 11, 2017

Brings a lot of useful insight of how to tune the model more from the data point instead of the model or algorithms. This could be super helpful in solving real world problems. Also the two case study homework helped me a lot to get a better understanding of what Andrew meant in his lecture. Great course.

By Shivam S

Jul 15, 2020

The thing is to get started, sir Andrew has given huge insights in working of Neural Networks and driven us through the different parts of the journey. This is not just a course but a story that every Deep Learning enthusiast must go through to see the difference. Eye opening Experience.

Thank You

Andrew

By Smail K

Jun 3, 2020

Another amazing course on deep learning and machine learning in general! This course gives you amazing insight into how you could strategize while running a machine learning project. I enjoyed going through the content of this course a lot, but not as much as the case studies! they seemed very realistic.

By Hari K

Oct 22, 2020

Very practical advice for a beginning deep learning engineer on what to do to avoid getting lost in the hyperspace of all the parameters one could change to train a better neural network model. I do wish however there was more explanation of why the different heuristics work, that Prof. Andrew suggests.

By Ashwin K

Apr 29, 2020

Good practical tips for planning out your machine learning projects. Every machine learning engineer should check out this course as it will be really helpful in planning your machine learning projects and allocating time for tasks in the project. And as usual, great, lucid instruction by Andrew Sir! :)

By Carlos A L P

Nov 24, 2020

Very interesting to see a transversal course of how to model and manage ML and DL projects, I am happy to learn new tricks to deal with train/dev/test sets with different distributions, dealing with small datasets and new techniques to apply transfer learning and lastly, how multi-task work in general

By J.-F. R

Feb 18, 2020

Great course by Prof Ng. I had taken his Machine Learning course a few years ago, so expected high standards of content and assignment preparation - I was not disappointed. Staff is very responsive and helpful in forums as well. I highly recommend it. Taken as part of the DeepLearning specialization.