Back to Neural Networks and Deep Learning

stars

107,625 ratings

•

21,487 reviews

In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning.
By the end, you will be familiar with the significant technological trends driving the rise of deep learning; build, train, and apply fully connected deep neural networks; implement efficient (vectorized) neural networks; identify key parameters in a neural network’s architecture; and apply deep learning to your own applications.
The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

JP

Feb 11, 2018

I would love some pointers to additional references for each video. Also, the instructor keeps saying that the math behind backprop is hard. What about an optional video with that? Otherwise, awesome!

WY

Jun 25, 2018

Really, really good course. Especially the tips of avoiding possible bugs due to shapes. Also impressed by the heroes' stories. Genuinely inspired and thoughtfully educated by Professor Ng. Thank you!

Filter by:

By Gokula K R

•Oct 19, 2019

Well, the concepts were crystal clear. To be honest, I got them theoretically but when i began coding, I could see that I could not connect few pieces here and there as there was the template given and I just had to fill in the blanks with whatever is given at the beginning of the module. I would suggest to let the learners code few functions from scratch, so that we could know what parameters to input, and what to return in the end. Also I think suggesting learners to visit documentations of few important modules like numpy, pandas, matplotlib etc. and instruct the learners to import them by themselves than importing them straight away at the beginning. Hope this would inculcate the developer culture and practice to beginners

By german b

•Jun 28, 2021

I have just finished the course. It was a great course overall. The videos provide the right amount of information in a very didactic way. His mathematical approach to the problem makes this course a good choice for those with not much background in linear algebra. The quizzes are a very good tool to wrap the fundamentals of every week and all the answers are addressed in the videos. Now, the programming assignments were the best of all the course. Each of the programming exercises gives you the tools and a step-by-step explanation to build functional codes. Every programming exercise that you complete helps you to understand the problem deeper and deeper! Can't wait to continue with the second course of the specialization!

By Anton V

•May 30, 2018

This is a great introductory course to deep learning and neural networks in general. The lectures are brilliant and so are the assignments. Best experience I've had with an online course. This one actually makes you want to complete it. I had some Python experience and a very foggy idea of how neural networks work after watching some youtube videos, however this course gives some really nice foundation for future development in the area. The assignments are easy to follow and give you code to use with things to fill in based on your understanding. This is a good way to get you started, I can now use those ideas to play around with a personal project and learn more. Looking forward to the rest of the courses in the series.

By Diego V R

•Aug 26, 2018

After Prof. Ng's Machine Learning Course, this new course appears at our Coursera's dashboard. I, again, enjoyed listening to Andrew's lectures. My personal recommendation is to first tackle Stanford's ML course and then this one. However, if you can only pick one and you are doubting between Stanford's Machine Learning Course and this one, pick this one, since it covers neural networks with way more detail than the original one. However, take into account that other machine learning related topics do not appear here such as dimensionality reduction techniques like PCA. Amazing treasure to the Deep Learning beginners out there. Thank you Prof. Ng and every one else who made this possible (The whole deeplearning.ai team).

By Sheyem K

•Sep 3, 2017

Definitely one of the best online classes I've taken. Even having studied this material a little bit before hand, I learned a lot--mainly in ways of building an intuition of why certain functions are chosen, or work the way they do. In this respect, I think there are few better at getting to the core of teaching: simple is better.

I appreciate that the course is designed to widen the reach of deep learning, but for those perhaps either more mathematically inclined or just extra curious, I highly recommend Lazy Programmer's Data Science: Deep Learning in Python class on Udemy for only $10. Gives a little more mathematical rigor...and hey extra practice in coding up a basic NN all in one script doesn't hurt. Thumbs up Ng!

By Vivek R

•Aug 24, 2017

Excellent course for beginners who are ready to put in extra effort to understand the material. By extra effort I mean repeatedly viewing the lecture videos and persisting with the programming assignment until the techniques are clear. That said, I am personally slightly disappointed with this course. Having completed Andrew Ng's original 2012 Machine learning course, I don't think there is anything new here for users like me. However it served as a good refresher. The other complaint I have is that the programming assignments are too simple. It's basically paint by numbers. If you really want to understand the material, you should write the programs from scratch and use any of the data sets available on the internet.

By Abhimanyu A

•Mar 3, 2018

What a marvellous roller coster ride it was! Thank you so much Andrew Sir and the entire team for putting up these efforts to provide such high quality material accessible to everyone! Cheers to all of you! I wish one day I would be able to share my knowledge like this! I wish!

One thing that I would like to add/suggest that, please provide some reference links, book recommendations and other useful information in the end of the program for anyone who wants to do some more research on the roots of the algorithms. Doing this, it will continue the learning path for the student and would keep the fire burning in him/her.

Please let me know if you have any questions regarding this review.

Thank you once again. :)

You rock!

By José A V M

•Sep 26, 2017

Amazing!! I've took part of the Udacity Deep Learning Nanodegree, but the math there was just not enough to my taste, here the thing is different, I love all the notation and the math behind. Also there are more focus in build the model step-by-step. As recommendation, I would like to include an activity to sketch the functions of the deep learning layers. For example, if I would like to build from scratch a deep learning model, what will be the functions I will need (in the assignments I could deduce them, but I would have like to have an activity related to this). Also I would like to have a little more focus in visualizing a small neural network, and write the values from the matrix to the visual representation.

By Pradeep K P

•Nov 20, 2017

Excellent course by Andrew and team. I am a big fan of andrew teaching style (since I took his ML course), no fancy screens just basic slides with great contents and explanation. My personal fav part in this course is programming assignment, this part is made very thoughtfully I think there are always some clue in the instructions and comments which one can pick to develop code to solve assignments.

For anyone planning to take this course I would suggest to refresh maths mainly topics like calculus, Linear algrbra, though Andrew explains required maths with a great ease. but still good to have maths background.

I am excited and looking forward to explore upcoming courses in deep learning series.

All the best!

By George G

•May 31, 2021

Machine Learning is quite demanding of Linear Algebra and Calculus but in this course, they won't be a hindrance as Andrew manages to deliver core concepts satisfactorily even without diving deep into the math behind. The course is designed to be approachable to the widest possible audience interested in Deep Learning. This results in programming exercises being pretty much "fill in the gaps" format which may come across as way too easy and they surely are. The key in my case was to try to implement the entire notebooks from scratch a week later and that's where the programming exercises shine. These are very well-crafted concise nuggets of code that shed light on abstract ideas excellently in a programming way.

By Paolo A

•Mar 12, 2020

As Business Executive I was rather skeptic and a little worried starting this adventure "in deep" as I have not programmed for many years, but still have some notions of linear algebra for luck. My personal objective is to understand AI deep networks to propagate it inside my Firm and especially to improve quality of living, freedom, sustainability in society. I think I got the right direction!

I have been very impressed by Andrew's approach and style that make you comfortable learning these not simple matters. I wish I could have time to continue the Deep learning Specialization.

Thank you very much to Andrew , to the whole Faculty Team and to the brilliant colleagues attending this wonderful course.

Cheers:)

By Syed M I

•Aug 23, 2019

Mr Andrew will make you climb the mountain while holding your hand.

There were sections in which I found the subject getting a better of me, but at the end of those videos he would come up and say "Don't worry if you didn't get full sense of what's going on" or "This is one of the hardest mathematical portion in machine learning" or "Even after all these years i am sometimes not confident of my approach but the model works magically".

In the confusing sections, he almost writes down the code for you to copy-paste. He had pre-written most of the codes for us, but make us feel that we are the ones writing it, because the ultimate aim is to learn things and be confident enough to replicate the learned skills later.

By Mukesh K

•Jan 22, 2019

First of all, thanks for offering the course on the platform. Before starting the course I had a good knowledge of machine learning and have been thinking about exploring the field of Neural Networks and Deep Learning. I could not do it in my college but the course provided me the opportunity.

The course material is very concise. Professor Andrew Ng presented very complex concepts in very easy language. The Programming Assignments are very helpful. They test and enhance both your Python Programming Skills and python code Implementation skills. While doing the Programming Assignments I was not only learning the concepts but also enjoying them. The entire course as well as the assignments are very much engaging.

By Jia D

•Jun 19, 2020

After taking this course, I have no doubt that Andrew is one of the best instructors in deep learning! He made you feel everyone could learn deep learning and do well. The quizzes examine your understanding of the concepts with many details, and the programming assignments are very well designed - one is built on the other with an increased level of difficulties. However, they never overwhelm you if you have the patience and believe you can master them eventually. The interviews with masters in machine learning also make this course even more exciting. Highly recommended to everyone who wants to start your journey in deep learning! Excited to start the next course in this specialization! Thank you, Coursera!

By NITIN B

•Jan 20, 2021

This Course is very helpful, especially when you want to start from scratch, it gives the basic intuitions about what actually happens and how the Deep learning works. Personally, I had a bit of experience in deep learning which I kinda learnt on my own(a few basics of keras tensorflow) before starting this course but after going through the lectures and programming exercises included in this course now I have a clear picture about what really goes in and out in a neural network. Though in this course tensorflow isn't taught but hey it's totally worth it, after taking up this course now I know how parameters are really updated in a layer and how the data in a neural network actually flows through the layers.

By Prithvi B

•Jul 26, 2020

Andrew, Take these comments as a token of my gratitude to you. From the perspective of clearing concepts, this is the best course on machine learning. I wish I would have done this course 10 year back. I have explained the concepts understood from this course to my 13 year old son and he now has an intuition of what machine learning is all about. Recently, lot of professionals have understood the concepts from your course and they all owe to you. Keep up the good work. I hope machine learning or technology proves to be helpful to human kind and governments of developing and underdeveloped countries also use them for better governance instead of being used by billionaires to get more rich. Thanks once again.

By Kevin

•Oct 6, 2017

Andrew you did it again! This is the best intro theory and implementation course on Neural Networks out there. It combines enough theory (optional Calculus/Linear Algebra) and full implementation. The discussion groups are great for hints when you get stuck. Thank you to all the assistants and TA's who put in so much time to this course!

Now, for anyone who is debating taking this, having a calculus and linear algebra background will definitely help you in this course for the theory, but it's not a necessity at all. Some prior Python experience is needed as you will need to understand how functions are being called, but that wouldn't take a lot of time to get caught up on, but would require additional effort.

By Justin T

•Oct 11, 2018

Fantastic course! As someone who has done several online tutorials that use frameworks like TensorFlow or Keras, even having implemented things like deep reinforcement learning agents and image classifiers with these frameworks, I've never really gone through any formal training on much of the lower-level concepts/mathematics of deep networks. But this course cemented a lot of the fundamentals about deep learning into my brain that I was missing before, organizing topics in a clear and concise sequence of videos/lessons that really helped me keep things organized in my own head. Doing the exercises in a "manual", framework-less way using just standard Numpy was an awesome and enlightening experience too!

By Balachandran S

•Oct 16, 2017

One of the best Deep Learning courses (probably 'THE' best) around. Been a fan of Andrew Ng's sessions after I took his Machine Learning course in Coursera.

The course is perfectly designed such that its complexity increases gradually every week. The instructor makes sure that the participants follow completely.

Some points about the course -

1) Assignments are made too easy (too much hand-holding). But maybe the others who are new to programming might appreciate it better.

2) Andrew laboriously reiterated the points that required understanding.

Sometimes, I felt the course topic to be highly repeatative but later after completing the assignments, I felt it was required to be so and it was totally worth it!

By Shanmuga G

•May 20, 2021

First of all, thank you so much for this course I find this course very useful, I get to know more things. I would definitely recommend this course to my friends and colleagues but only if they are interested and also love to do math stuff because a non-math lover can't get much from this course, obviously the mathematics section of this course was tough to understand and had a bad time in deriving those algorithms and programming. I would also like to state that the quiz and examination section of this course is harder no hardest and that's completely opposite in terms of difficulty like you'll figure the teaching part was easier than understanding and the understanding is easier than programming stuff.

By Vishnupriya V

•May 17, 2019

As a beginner who is interested in Deep Learning, this course was very useful an informative. The explanations given by Prof. Andrew were to the point and precise. However, detailed explanations behind the mathematics(calculus) could've been given as optional videos. The quizzes and the programming exercises were also very challenging at a beginner level. They quizzed us not only on the equations but also on the concepts. The only drawback in this course that I faced was trying to submit my programming assignment through Jupyter notebooks. They can very annoying at times. Also, the discussion forms were very active with the mentors and fellow student who would quickly help by replying to your questions.

By Steve S

•Dec 3, 2017

This course is a very thorough introductory review of neural networks that doesn't require expert level knowledge in some of the underlying math like calculus, but nevertheless manages not to talk down to you. In fact, the straightforward way the material is presented inspired me to learn calculus on my own to back up the material. Regardless, it gives you (almost) everything you need to start coding neural networks on your own. Where I did have some trouble it was owing more to lack of experience with Python and the Jupyter environment. I also would have liked a little more visibility into the data we were inputting, although I think that may be covered more in classes further on in the specialization.

By Mohit A

•Aug 22, 2020

Hi to all team who had put their Mount Everest's height like efforts for making this a fab course and self explained assignments.And special thanks and love for my dear Andrew sir for teaching too smoothly and always relaxing their students by saying "If you don't get it,don't worry, we will see it after sometime".One more Special credit and mention for team who built these amazing self explained and too easy to understand python notebooks so that even a kindergarten student can get this and one only needs to pay attention on making skills and not on other things like how to fetch data,and how many and which libraries to be added etc.

Thanks and kudos to all team and loads of respect to DEAR ANDREW SIR.

By Arnaud S

•Oct 29, 2017

I found this course absolutely excellent. The structure and approach are absolutely great, and I am very happy that you force students to understand the mathematical underpinnings of backpropagation instead of letting a DL framework do the heavy lifting for you. Engineers need to understand what they do deep down.

My only improvement suggestion would be to provide a more detailed explanation of why we do the matrix multiplication & transpose in the computation of dW and of dA[l-1]. It turns out that in the case of dA[l-1] the explanation goes to the heart of reverse-mode differentiation and how to avoid combinatorial explosion. Cfr's Colah's blog excellent paper on backpropagation for details.

By Simranjit S P

•Jan 19, 2020

I liked this course very much. I have done coding and trained models in Pytorch and didn't have strong grasp in the math's part i.e Gradient and derivates that is the why i have taken this course at the first place. Though the course doesn't contain everything but it has given me enough knowlegde to start with deep-learning.The quiz and programmning excersice are really good. I have to think enough at some part and have done mistakes many times but got my concepts cleared. And thanks to coursera team for approving my financical aid.And though review may be good or bad depending on the person but i have learnt what i want to learn and it is good enough rahter than youtube or online material.

- Google Data Analyst
- Google Project Management
- Google UX Design
- Google IT Support
- IBM Data Science
- IBM Data Analyst
- IBM Data Analytics with Excel and R
- IBM Cybersecurity Analyst
- Facebook Social Media Marketing
- IBM Full Stack Cloud Developer
- Salesforce Sales Development Representative
- Salesforce Sales Operations
- Soporte de Tecnologías de la Información de Google
- Certificado profesional de Suporte em TI do Google
- Google IT Automation with Python
- DeepLearning.AI Tensorflow
- Popular Cybersecurity Certifications
- Popular SQL Certifications
- Popular IT Certifications
- See all certificates

- Skills for Data Science Teams
- Data Driven Decision Making
- Software Engineering Skills
- Soft Skills for Engineering Teams
- Management Skills
- Marketing Skills
- Skills for Sales Teams
- Product Manager Skills
- Skills for Finance
- Android Development Projects
- TensorFlow and Keras Projects
- Python for Everybody
- Deep Learning
- Excel Skills for Business
- Business Foundations
- Machine Learning
- AWS Fundamentals
- Data Engineering Foundations
- Data Analyst Skills
- Skills for UX Designers

- MasterTrack® Certificates
- Professional Certificates
- University Certificates
- MBA & Business Degrees
- Data Science Degrees
- Computer Science Degrees
- Data Analytics Degrees
- Public Health Degrees
- Social Sciences Degrees
- Management Degrees
- Degrees from Top European Universities
- Master's Degrees
- Bachelor's Degrees
- Degrees with a Performance Pathway
- Bsc Courses
- What is a Bachelor's Degree?
- How Long Does a Master's Degree Take?
- Is an Online MBA Worth It?
- 7 Ways to Pay for Graduate School
- See all degrees