Chevron Left
Back to Neural Networks and Deep Learning

Learner Reviews & Feedback for Neural Networks and Deep Learning by DeepLearning.AI

4.9
stars
107,625 ratings
21,487 reviews

About the Course

In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning. By the end, you will be familiar with the significant technological trends driving the rise of deep learning; build, train, and apply fully connected deep neural networks; implement efficient (vectorized) neural networks; identify key parameters in a neural network’s architecture; and apply deep learning to your own applications. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Top reviews

BC
Dec 3, 2018

Extremely helpful review of the basics, rooted in mathematics, but not overly cumbersome. Very clear, and example coding exercises greatly improved my understanding of the importance of vectorization.

MZ
Sep 12, 2018

This course is really great.The lectures are really easy to understand and grasp.The assignment instructions are really helpful and one does not need to know python before hand to complete the course.

Filter by:

126 - 150 of 10,000 Reviews for Neural Networks and Deep Learning

By Akif E S

Sep 23, 2020

I think while writing helper functions, expected outputs' should be same as our test and train data. It causes some misunderstandings. I know the fact that when we don't use assess' it will take time to see output but I think that this is a sactificial thing.

And also for the students that know calculus well, optional videos' can be much more detailed like dZ computation or the concepts of deep learning via calculus.

Except these two reviews, I think this was a really good course. I really thank you to you who prepared these courses.

My best wishes.

By Nowroz I

May 17, 2020

I loved this course as it explains the intuition behind the methods used in deep learning. As I have no problem with Calculus and Linear Algebra, I was able to calculate the derivatives by myself. People who are not accustomed to working with NumPy may find the assignments overwhelming. Hence, my suggestion will be to learn the NumPy (only the basics will do) before starting this course.

By Samaelí

Apr 3, 2020

I give four stars because the course is great and the programming assignments too. But I think sometimes the programming assignments were a little condescending and easy. Don't get mi wrong, there were moments that I din't know what to do, but there were also a lot of times that all the procedure was explained.

By fahad

Aug 25, 2019

This course was really clear my concepts of Deep Learning and how actually neural network works.

By Shravan V

Feb 2, 2020

The course exercises were very well thought out and well designed. The instructions were not crystal clear, which led me to errors in the notebook. In week 4's last assignment, it wasn't made clear that the function definitions I had written in the preceding assignment should not be cut and pasted into the notebook, but that the grading system would use its own function definitions; this led to my submission leading to grading errors. Took many hours to figure out what was wrong, through the help of one very helpful person (Paul Mielke) on the forum.

Andrew Ng's handwriting is TERRIBLE. He should either practice writing more clearly, or use slides.

I would have appreciated having written down lecture notes; having to take notes on the fly was hard as I was sometimes watching the lectures on the train or during dialysis (one arm is disabled).

Is it really necessary to use up so much of the screen when showing the videos with the logo of deeplearning.ai?

Just a comment on one important shortcoming of online instruction: As a professor who teaches statistics, it is interesting to see the loss in learning that the student experiences through the absences of individualized feedback. One learns way more when one can talk to the teacher(s), and I guess this high volume throughput style of teaching limits what can be taught online.

By Omar A

Jul 22, 2019

If you have taken this course after ML by Andrew, you will see exactly the same material covered in 1 week expanded in 4 Weeks except using Python instead of octave or Matlab.

If you have calculus background I expect you to get tedious from elementary approaches in the lectures to get rid of Math and calculus.

Programming exercises in this course are very easy and below the level of first excellent experience with ML course.

There is no easy way to get lectures slides, No reading sections in this course. Like this course made to make systematic approaches to get things done without actual care about understanding the theories and concepts.

The good news comes when you have no previous knowledge about NN and elementary python skills, then this course is an excellent way for you to start.

By Alessandro

Sep 9, 2017

The content is great and I learned a lot. Certainly there could be a lot more feedback by the instructor in the forum. My feeling is that the students are really left on their own. Good from one point of view (cause you really have no choice than crush your head on the problem for days until you understand or give up), bad from another (it takes a lot longer to clarify difficult points). Fortunately the forum is populated by very clever students that take the time to answer questions. As a beginner I learned the broad strokes and intuitions for NN in this course, but the details about certain formulas are still very obscure and I was hoping for a better explanation of those.

By Trevor M

Oct 28, 2020

info is really good, but there's a lot of handholding in the assignments where it matters, but also, no help afterwards,

Assignments might as well be a follow-along, one-day seminar, as opposed to a bonafide challenging assignment. I can only hope that the latter assignments get better as the material become more challenging.

I loved the assignments for the Machine Learning course with Andrew Ng (with Matlab), but these assignments are far too trivial, and are essentially just "fill in the blank". Perhaps, given that I've already taken that course, I should be looking for something more challenging than this course. Lectures, on the other hand are very good.

By Lucian F

Mar 23, 2021

Excellent material, but there was a bit too much hand-holding on the programming side: not challenging enough on conceptually figuring out stuff (just the hassle of working through someone else's code).

By veit s

Apr 27, 2020

Programming assignments are too easy, mostly copy and paste.

By Tracy B

Sep 29, 2019

The notation used in the course was horrible and correct math notation should be used even if the course is not intended for math students.

I also feel this course should not be labeled as intermediate skill level. This was a very beginner level course. I have a PhD in applied math and was simply looking for knowledge in deep learning since my doctoral work was in a different field. It was very clear that I am WAY behind the target audience of this course. That's not necessarily a negative reflection on the course, but I still didn't find it very useful and feel like it should be labeled as a beginner level course.

By Jerome B

Nov 16, 2017

To me, this is a failed attempt at simplifying those concepts. After spending hours trying to figure it out, now I find the algorithm behind the Neural Network very simple, and I can easily explain it to someone. But in this course I had to figure out by myself what was the point of those hundreds of lines of maths. So, very interesting concepts, but the "transmitting style" wasn't for me.

By Muhammad A

Aug 20, 2018

Great attempt but it failed to provide complete details. Specifically the project files and their loading mechanism

By Francis J

Dec 28, 2017

too easy, suitable as an entry level class

By Domagoj K

Aug 18, 2017

I am very disappointed with this new course concept where you have to pay 43$ a month to be able to solve a quiz. Coursera used to be famous for its free courses and now it just removes free features over the time. It has become another site with expensive courses. I watched first week lectures and this is probably my last time to enroll in Coursera course.

By Manish S

Dec 31, 2019

This course is more of spoon feeding, I liked the introduction to neural network in "Introduction to Machine learning" course better.

By Maxence A

Oct 29, 2017

The programmation exercice are nice, but the courses are mainly about very basic linear algebra.

By Joseph K

May 20, 2018

It will be a good course when you dump jupyter note books.

By Felix F

Dec 19, 2017

giving low grade for ongoing delays of course 5

By Medivh

Oct 22, 2017

视频都播放不了,反馈了也没个结果,怎么学?

By Long H N

Dec 10, 2017

N/A

By Amit P W

Sep 30, 2018

Hello Andrew Ng Sir & Coursera Team,

Tell your instructors about yourself.

My name is Amit Wadhe. I am software engineer working in Walmart, Bangalore, India. I have 4 Years of working experience. Prior to Walmart I was working for Morgan Stanley. I have done my Bachelor of Technology in Computer Science and Engineering. I was always passionate about the computer from my school days. Out of curiosity I did my first C Language class in 10th Standard(School). That too with daily up-down of total 180km with train for one month from my hometown to Akola city. That time there was no computer courses offered in my hometown. After my schooling, I decided to go for engineering in Computer branch. I think that is enough in short about me.

Why did you take the course? How has it helped you?

I am working mainly on Java applications for last 4 years professionally. In last couple of years I realised that its not something which is exciting me, Its not something I wanted to work on. I was not sure what I wanted to work on, what excites me. I was hearing bits and pieces about Machine Learning and Artificial Intelligence since long from friends and colleagues. I was having perception about AI is that it's something big, something rocket science, something not for normal professional. But I got true trigger when I saw video about self driving car in silicon valley. That time I felt, Yes I wanted work on something like this, something which can be useful in real life, day to day life. I started searching about ML courses on google, I saw multiple courses on Udemy and Coursera. I red feedback about some courses. First place I started with some Udemy courses on ML for beginners but It comprised of only on how to code instead how it work internally. I was interested in knowing how something works internally instead of more in coding part. As I was Java developer I knew coding is not big deal. So I was curios about how ML models work internally, what is mathematics behind it, I was having interest in mathematics from the school days, though I did not score top. Then I started with ML by Andrew Ng on Coursera. After completing course, I felt like Yes, this is what I was looking for. Post completion my curiosity in deep learning has taken deep dive and I started looking for more courses by Andrew Ng on Deep Learning.

This course helped me to clear my understanding about how Neural network works mathematically. I was knowing bits and pieces about neural network steps like forward propagation and backward propagation but that was partial knowledge. After completing course I got that satiate feeling, Yes I know now, I understand it now in and all.

What did you love about the course? Tell them!

"I loved the bottom up approach of Andrew Ng Sir explaining concepts and Unveiling the treasure".

Irrespective of background I think anyone can understand the course with some knowledge on matrices and linear algebra. Recalling required knowledge learned in previous slides in short before diving into concept. Pace of course is also something which helps to grasp concept easily. Very intuitive examples helps to understand concepts faster. The example which I like most is about Neural network model of housing price prediction where Andrew Sir told intuition of hidden layers which is really connected to real life examples.

By Sarah R

Dec 29, 2018

This course was insanely clear and meticulously constructed. As someone who does data science work professionally, I so appreciated the thought that went into the design of the videos and the programming assignments. You are seeing really exemplary code and also really sophisticated use of the Jupyter notebook! Also, the test cases are so well-constructed. You really get to *see* all of this stuff working or not with the carefully designed helper functions that allow you to visualize the decision boundaries and view training examples. Of course, the writing of these helper functions is no small feat. IT WILL NOT BE LIKE THIS WHEN YOU CAST OUT ON YOUR OWN. But, what this course does for folks (like me) who didn't have the benefit of a course like this in their formal schooling (perhaps they are too old and this stuff only got well-organized and codified more recently) is provide exemplars. Will your code always look like this for everything you build? No. But it shows you, using the exact technology that you are likely to employ professionally (tensorflow is coming up in the next course), what is possible. I look forward to rest of the specialization.

A note on the pacing: Perhaps because I am already very familiar with python, numpy, and Jupyter notebooks, I was able to complete this course in about two days (rather less than 4 weeks). However, I still got a ton out of it. I think it is paced the way it is so as to be viewed as more accessible by everyone, and also not with the assumption that you want to dedicate the majority of a weekend to it. Probably also there is something to the psychology of completing it so very ahead of schedule that the designers of this specialization are not altogether unaware of. But, if you, like me, know that you want a refresher on neural nets that is going to be practical and useful, in that it will help you both implement them AND understand what you're doing, this is a quick and effective way to jump back in.

Finally, since this is such a quick course, I really recommend NOT skipping it, even if you want to get to the more advanced topics in the rest of the specialization quickly. The course is so thoughtfully designed and concepts are introduced in a very specific and intentional way to make sure you understand each step before the course progresses. Based on having experienced this careful design, I expect the notational and programming conventions established in this course will make the next courses in the specialization more accessible.

In conclusion, this is I think the best online course with integrated programming exercises I've ever taken. I think it might be a standard-bearer for the whole field. Well done!

By Jeremy W G

Apr 25, 2018

Copy&Paste from the survey I wrote earlier.

In 2012, I graduated with a statistics degree (BS) from the middle west where many companies hire data scientists to do simple analytics work. With my dream to do more predictive modeling work, I decided to go to the west coast and join the University of Washington to learn statistics in the master's program. One reason was that UW offered a great statistics program that most students chose to continue the Ph.D. program. The other reason was that Seattle had a few great high tech companies for me to explore opportunities at. However, although the MS program gave me a strong background in statistics theory, I found the industry moved so fast that my knowledge was falling behind the industry needs. In 2013-2014, I took Andrew's ML course on Youtube and Amazon hired me as a data scientist in the marketing department of Cloud Computing department (AWS). I figured that as a stats major I didn't have the knowledge in cloud computing or marketing, so in 2015 I took Coursera's big data specialization offered by UC San Diego, and the digital marketing specialization from UIUC. Later, I found another ML job at Amazon, using a lot of big data tools (Hadoop, spark, etc.) on AWS. After a year of settling down in San Francisco, this year, I decided to pick up the knowledge in deep learning. The first course of DL was fundamental but contained so much information that sometimes I needed to review several times because I forgot many statistical theories back in school. I thought it'd be very hard course but Andrew did a great job designing the curriculum where the theory and the application have a great balance for working people like me to start with. The amount of homework was much easier than I anticipated. I think for students who want to take the real challenge of coding, should hide Andrew's hint and write own functions. Overall, I like the Coursera courses and will continue to learn.