Chevron Left
Back to Sequence Models

Learner Reviews & Feedback for Sequence Models by DeepLearning.AI

4.8
stars
27,028 ratings
3,214 reviews

About the Course

In the fifth course of the Deep Learning Specialization, you will become familiar with sequence models and their exciting applications such as speech recognition, music synthesis, chatbots, machine translation, natural language processing (NLP), and more. By the end, you will be able to build and train Recurrent Neural Networks (RNNs) and commonly-used variants such as GRUs and LSTMs; apply RNNs to Character-level Language Modeling; gain experience with natural language processing and Word Embeddings; and use HuggingFace tokenizers and transformer models to solve different NLP tasks such as NER and Question Answering. The Deep Learning Specialization is a foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to take the definitive step in the world of AI by helping you gain the knowledge and skills to level up your career....

Top reviews

AM
Jun 30, 2019

The course is very good and has taught me the all the important concepts required to build a sequence model. The assignments are also very neatly and precisely designed for the real world application.

MH
Apr 21, 2020

Very good. I have no complaints. I though instruction was very clear. Assignments were very helpful and challenging enough that I learned something, but not so challenging that I got stuck too often.

Filter by:

76 - 100 of 3,209 Reviews for Sequence Models

By Stephen M

Nov 9, 2020

Another excellent course, well presented, with compelling content. My only concerns are regarding the labs. With no previous Python or Keras experience, I found I needed to spend a lot of time coming up to speed on new programming domains in order to complete the assignments (my previous experience is mainly C). While this was somewhat an issue in the previous courses in the Specialization, I found it particularly so in Sequence Models. This distracted from the main objective of understanding the core NN algorithms. I would recommend either: 1) advising students to have a solid background in Python, or 2) a bit more clarity on how to use the Keras functions in the labs.

By Francis S

Aug 26, 2019

Previously, I have taken online classes before in Machine Learning by going the cheap route (Udemy, blogs, youtube) and you get what you pay for. Andrew Ng explains it the most thorough, easiest, and simplest way possible. Presentation material is very understandable. Great class for new machine learning learners. Highly recommend it. The only downside is that the programming exercises are little too easy in my opinion. I feel like the best way to get your hands dirty is to do actual projects (do your own projects). These lectures are good for intuition and background of different types of Neural Network architectures. Other than that, Great material. Thanks Andrew!

By Hermes R S A

Apr 18, 2018

A very good course. It presented gated units like GRU and LSTM with so much simplicity that anyone can understand it on the first run. The downsides were the Jazz music generation, since it was the only task where the data is non intuitive (MIDI files) so you black-box apply the algorithm to a data you have no idea how it is structured, unless, of course, you are familiar with MIDI files prior to this course. Other than that, the learning curve was a bit slower in the beginning, but explodes by the end of the course, where you put all the subjects you've learned to perform a neural machine translation, which, in my opinion, was hugely awesome and rewarding.

By Dipan M

Jul 15, 2018

Like all other course in this specialization, this is also indeed a great course. It fundamentally clears concepts and gives very clear concpts for topics such as RNN and LSTM, which can ohterwise can be difficult to digest. Also, the programming excersices, built on great topics, suh as Music synthesis, Trigger word activation, are exciting to work on. The only feedback I would like to suggest, is that topics of Backpropogation for sequence model is critical and should have been taken up indepth in study rather than left to excerciss only. Overall this course is more fast paced and packed 3 weeks which should have been perhaps a 4 week course.

By Shuvayan G D

Jun 30, 2019

This course teaches in-depth knowledge of sequence models in natural language processing and speech regocnition . The programming excercises and the quizzes provide more content to furthur your grasp on the matter . The progamming exercises being totally in Keras , provides a clear analogy of how LSTM s and GRU s , work along with attention models introduced in the last week. You also have to implement a LSTM and RNN from scratch in Numpy , which provides for the basic knowledge how these architectures actually work. Overall , it was a great experience and taking this course should be a pre-requisite for all learning in NLP.

By Jeffrey S

Apr 27, 2018

Whew! This was very interesting and challenging. I have a huge backlog of things I need to go back and read up on and better understand. I really appreciate the work that Andrew and his team put into these courses. The lectures were very well paced and clear. His temperament is exemplary for a teacher and his subject knowledge comes across. I found the exercises really well thought out and beautifully crafted. The coding style could not have been more clear and the consistency made it understandable despite the complexity of the subject and the limited time to delve into the mechanics of Keras and the Python tools. Bravo!

By Matthew J C

Mar 28, 2018

The last course is in this series does not disappoint. I found this course to be more difficult than the others; likely because I had very little prior exposure to recurrent neural networks. However, this course is worth the effort as it opens up a realm of new possibilities; text, audio & time-series data. Whether you need to detect, classify or translate sequences, or even generate new sequences in the vein of some examples, this course is for you. There are several high-level APIs for performing these tasks but having a deeper understanding of what these APIs are doing is invaluable to your success. Take this course.

By Ricardo S

Mar 4, 2018

An extremely well thought off and comprehensive introduction to sequence models, with examples taken from the most important/interesting application domains. Andrew NG's clarity of exposition is absolutely wonderful on such an otherwise complex area. The assignments are very cleverly chosen and helped me to finally get to grips with Keras. This being a new course, the assignment notebooks had a few minor issues that are well known by now and documented in forums and erratas, and will likely be fixed in subsequent reruns. Nevertheless, given the breadth and quality of the content, 5 starts are absolutely well deserved.

By Mehran M

Jul 22, 2018

This was, in my opinion, the best of the 5 courses. Actually, here's how I'd rank the courses (from best to worse):

5, 1, 2, 3, 4

I learned a lot about sequence models and half-way through the course, I was able to jump right in and try some ideas I had in PyTorch.

The assignments could use a bit more work: I didn't really feel inspired by them and their "fill in the blank" style prevented me from thinking too hard.

All in all, I highly recommend this entire specialization. I was completely clueless about deep learning at the beginning, but now I'm actually trying out some novel ideas!

Thanks so much Andrew and the team.

By Rahul K

Mar 19, 2018

This course, undoubtedly, has the toughest assignments compared to all the previous courses. The content is rich and informative. Again, pay close attention to the hints given in the programming exercises. If you don't follow, check the Discussion Forums to get a hint. Professor Andrew, your teaching is absolutely sublime - Crisp and concise. Personally, I would have loved an entire week dedicated to Attention Models as the entire concept seemed a bit rushed. Other than that, I have absolutely no qualms! For the people who are enrolling for THIS course only - make sure you're pretty good with Python and Keras.

By David R R

Feb 20, 2018

Such a great course. It explains everything from scratch and teach you how to code in numpy (scratch) and how to code in keras to build high performance system (instead of tiny datasets).

I recommend this corse and the DeepLearning specialization as well. Thank you.

Es un curso muy bueno. En el se explica todo desde cero y te enseña como programar los modelos en Numpy (desde cero) o usando keras para crear modelos de alto rendimiento (a pesar de los datasets pequeños por falta de capacidad de computo).

Recomiendo este curso a todo el mundo asi como tambien las especializacion completa en DeepLearning. Gracias

By Chan-Se-Yeun

May 1, 2018

This a the last and the most anticipated course for me. It's hard, informative and most useful. I've got chance to learn some popular and powerful methods within the years, like word embedding and attention mechanism. I start to understand the way deep learning community deal with NLP, i.e., ingenious design of network structure inspired by the pattern human beings perceive the world. It doesn't enjoy solid foundation as statistical learning does, but is works and suitable for engineering. That's astonishing! I hope I can combine deep learning with traditional methods to better understand NLP.

By Boyko T

Sep 14, 2020

I just want to say Thanks to Andrew and the team for a great content. I may not be able to create award winning NLP models after this course, but I have learned a bunch about them. Lots of work went into creating great videos and even more in creating the programming projects. I really appreciate the format of the programming assignments. For someone with not much experience in DL, they were pretty close to perfect: I felt I was not left to fend for myself, yet they were not overly simple and forced me to solidify what was thought in the lectures and learn better. Thank You Andrew and team!

By Hu H

Jan 3, 2019

Thanks very much for Andrew Ng and the other teachers, who made a series of these awesome classes including videos or programming works running on the jupyter-notebook. And also thanks the finical aid provided by the Coursera, I can't finished this course without your generous help. After a hard work with the Deep Learning classes, not only gained the knowledges, but inspired by the spirt from Andrew that "try to help people with your technology", which actually changed my mind, I will study more, do better to remember that in my life. Thank you and hope the world be a better place.

By Adarsh K

Jan 19, 2020

Awesome Course! Learned a lot. Would highly recommend this to anyone willing to learn NLP, Sequence Modelling, Word Embeddings, Machine Translation and related stuff. The course builds from fundamentals of NLP like RNNs then LSTMs/GRUs to Word Representations to Sequence-to-Sequence Modelling. At the end you'd learn so much that by just looking at a single slide of an overview of Trigger Word Detection you could make the entire DL model yourself. You'd be fluent with Keras after completing this course. I'd like to thank the Instructor, the Teaching Assistants and the mentors.

By Willard C T

Jul 1, 2020

I have taken now 6 or 7 courses conducted by Andrew Ng, including this series of 5, and it is absolutely amazing to me that a person of his eminence & level of achievements would even take the time to offer courses like this series. And, what makes it still more incredible is his sincerity, humility and genuine enthusiasm for the subject matter and his gift for explaining it, especially when it becomes very complex. It is just so inspiring; he is truly a rare & exceptional person & teacher and I look forward to taking whatever other courses he is conducting or recommending.

By xuezhibo

Feb 20, 2019

The last course is a little bit more difficult than the previous! Although I majored in Civil Engineering and got my Master's degree in 2018, since I finished the Machine Learning class of Ng 2 months ago,I found this art is so charming and powerful ,so I continued to finish the CS229, That is also a wonderful course!! And today,this DL course was also completed, now I am attending the CS231N class~ Thank you Ng ,thank u cousera, because of you,I have a chance to attend those amazing course from the most famous university. Ng,thanks,you are doing a great thing,thank u!!

By Adnan L

Feb 11, 2020

Amazing course. This course was very informative. The assignments gives students the ability to code in keras and use those NLP models described in lectures in the programming assignments.

I felt there was enough help during the programming assignments from the instructors /mentors on the discussion board.

The only thing I wish about this course is to let the students program the Data science part of the programming assignment. I felt some of the details of the pre-processing of the data was already done. It would have been nice to do that or add as an optional part.

By Solomon W

Feb 11, 2018

Very frustrating grader. Really time wasting. What is this team trying to accomplish with such disorganized efforts? I hope to see more improvements in the future. I have just completed week1's assignments and revising my reviews from 1 to 4 because the course content is really good and has softened the disappointments caused by the grader.

After week1, the grader frustrations eased as it was working more and more consistently. Most importantly, I learned lots of cool stuff and so I am revising my reviews from 4 to 5. I hope all grader issues are now resolved.

By Florent G

Jun 8, 2019

A huge thanks for this journey in the specialisation. The material is of high quality and the pedagogie of high qualiber! My only regret is that the course is not longer :P I would have love a course about GAN for example. Also an advanced followup on this specialisation would be amazing. Wanting to learn more i will probably continue my path with https://eu.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893?referrer=nvidia&utm_source=nvidia&utm_medium=partner&utm_campaign=referrerpage, however i would love to continue with deeplearning.ai !

By Jianxu S

Jun 18, 2020

With time and perseverance, most of us are able to complete this final course of a rather challenging specialization. I particularly like the final course because the programming assignments combine architectures and techniques we learned in previous courses/weeks including CNN, RNN, GRU, Attention, LSTM, just to name a few. We also repeatedly write codes in Keras which give us a lot of practice and without being bogged down to every little detail. Big thanks to Andrew and team for making this specialization available to world's deep learning community.

By Jairo J P H

Feb 1, 2020

El curso es muy bueno, particularmente estoy muy agradecido con COURSERA, por darme la oportunidad de hacer los cinco cursos de la Especialización en Deep Learning con ayuda economica y permitirme tener acceso a este tipo de capacitacion y certificacion. Muchas Gracias…!

The course is very good, particularly I am very grateful to COURSERA, for giving me the opportunity to do the five courses of the Deep Learning Specialization with financial aid and allowing me to have access to this type of training and certification. Thank you very much!

By Marcel M

Jul 27, 2018

This is a superb module which provides you with the skills that will enable you get going fast in developing real world applications that can be modeled as sequence data. You learn of the latest state of the art techniques of developing sequence models using techniques such as GRU's, LSTM's, how to debug them and also how to employ Attention models to make your models that much efficient for problems in NLP, Machine Translation and Speech Recognition. This course is a must for anyone who wants to be a sound practitioner of AI. I love it.

By Sikang B

Apr 1, 2018

Though there are some minor lost clarifications in the flow, the general learning experience of this course is overwhelmingly practical and relevant to many real world scenarios. Personally felt this course completed the knowledge graph (of course I only have a preliminary understanding of everything) and opens many doors for future learning.

One nit-pick is Keras documentation can be annoying confusing and misleading at times. Would suggest to revise programming assignment instructions based on some popular threads in Forum discussions.

By Aleš D

Mar 4, 2018

As usual, Andrew makes AI almost look easy. I have one comment about programming exercises. There are errors in the text sometimes and, at least personally, I don't have a habit to check discussion forums first, before starting work on the assignment so these things were sometimes a source of lost time, scratching my head where have I gone wrong only to find that the results are correct and it was the notebook that was not up to date.

This aside, I would recommend this course to anyone interested in AI. Keep up the good work!