Back to Mathematics for Machine Learning: PCA

4.0

stars

1,382 ratings

•

305 reviews

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.
At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge.
The lectures, examples and exercises require:
1. Some ability of abstract thinking
2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis)
3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization)
4. Basic knowledge in python programming and numpy
Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

Jul 17, 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

May 01, 2018

This course was definitely a bit more complex, not so much in assignments but in the core concepts handled, than the others in the specialisation. Overall, it was fun to do this course!

Filter by:

By Cynthia M

•Jun 09, 2018

The course is mathematics for Machine Learning. Yet, they require that you are proficient in python. I understand the mathematics. However, no one will answer my questions on the python we are suppose to code. I passed both of the previous courses. I've taken and passed Statistics with python on edX. I've very disappointed in this course.

By Kannan S

•Apr 11, 2018

There are no numerical examples as the course progresses. The instructor does everything algebraically. As a result I was not able appreciate the practical use of PCA. Later on I saw there are very nice videos in Youtube that illustrate the concept more lucidly using numerical examples. I am disappointed.

By Yan Z

•Oct 13, 2019

Marc Peter Deisenroth jumps too much at the important computation steps. Some steps might be simple to him, but it could be very misleading to students.

Often times, he will just throw out some equations without letting the student know what exactly we are trying to achieve.

By Kristina S

•Aug 24, 2018

One of the worst online courses I have had. Inconsistent teaching, relaying on students having previous knowledge about Python and rads (where the heck did that come from?), failing to convey what and where this is practically used for.

By Oliver K

•Feb 21, 2020

PCA was my main interest in this specialization, and it felt very rushed and lazy (i.e. important explanations are fully missing, or just done via pdf from a book). I used *a lot* of Khan Academy to understand what's going on.

By Musabbir H S

•Jan 31, 2020

I don't know if this course has been deliberately made hard to understand or I was lacking something. Lectures were pretty useless to me. Coding exercises were not clearly defined. I felt utterly frustrated at times.

By Ashlee H

•Nov 26, 2019

You'll likely catch on pretty early that this course will mostly expects you to learn the content elsewhere. You're paying for mostly just for assignments and quizzes which there are far more of than video lectures.

By Ed W

•Nov 25, 2019

The lectures gave incomplete information for the understanding of the material and the homework assignments. Wish this course was stretched to be a 10 week course so that we can all thoroughly learn the material.

By Kimberely C

•Dec 27, 2019

Definitely, not for beginners. Just as bad as the last one. They need to have more examples, which walk you through the ones like they give you on the homework as well as an example of how to do Python.

By Marcin

•Aug 19, 2018

By far the worst online course that I've ever done. Assignments require a lot of experience in Python, which is not communicated upfront. At the same time, staff doesn't provide any actual support.

By Danielius K

•Sep 24, 2019

You will spend most of your time lost.

Quizes are not clear and ill-prepared.

You will need to spend a lot of time looking for material outside of the course to actually make progress.

By Benjamin F

•Nov 18, 2019

The didactic value of this course is rather low. The lectures do not explain the very concepts required to sovle the subsequent assigments, or do it in a very poor way.

By Tai J Y

•Nov 16, 2019

This course is not like other two, which explain much clearly. When I do the practice quiz and coding, I resort to find other help on the Internet.

By Vibhutesh K S

•May 18, 2019

This course is really bad and extremely hard to follow. Previous two courses were executed very well, teaching quality in this is poor.

By Ananya G

•Dec 28, 2019

I did not register in this course to have some person read out the textbooks or dictate the derivations in the lecture videos.

By Nithin K

•Jun 05, 2018

Too conceptual and theoretical making it difficult to understand. Examples would have helped a lot.

By Nabijonov K T

•Jan 28, 2020

very very bad course! Assignments and quizzes made as shit. NO answers. Worth NOTHING!

By Saeif

•Jan 01, 2020

This course was a disaster for me. The first two were great though.

By Jared E

•Aug 25, 2018

Impossible to do without apparently an indepth knowledge of python.

By Wensheng Z

•Nov 24, 2019

Jumpy instruction with little illustrations

By Adam C

•Oct 31, 2019

Worst course I've ever taken, online or IRL

By Zecheng W

•Oct 20, 2019

Poorly organized and extremely confusing

By Mingzhe D

•Dec 11, 2019

Assignment 1 cannot be passed!

By Anofriev A

•Oct 01, 2019

The worst course ever

- AI for Everyone
- Introduction to TensorFlow
- Neural Networks and Deep Learning
- Algorithms, Part 1
- Algorithms, Part 2
- Machine Learning
- Machine Learning with Python
- Machine Learning Using Sas Viya
- R Programming
- Intro to Programming with Matlab
- Data Analysis with Python
- AWS Fundamentals: Going Cloud Native
- Google Cloud Platform Fundamentals
- Site Reliability Engineering
- Speak English Professionally
- The Science of Well Being
- Learning How to Learn
- Financial Markets
- Hypothesis Testing in Public Health
- Foundations of Everyday Leadership

- Deep Learning
- Python for Everybody
- Data Science
- Applied Data Science with Python
- Business Foundations
- Architecting with Google Cloud Platform
- Data Engineering on Google Cloud Platform
- Excel to MySQL
- Advanced Machine Learning
- Mathematics for Machine Learning
- Self-Driving Cars
- Blockchain Revolution for the Enterprise
- Business Analytics
- Excel Skills for Business
- Digital Marketing
- Statistical Analysis with R for Public Health
- Fundamentals of Immunology
- Anatomy
- Managing Innovation and Design Thinking
- Foundations of Positive Psychology