Back to Probabilistic Graphical Models 1: Representation

4.7

stars

1,214 ratings

•

265 reviews

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
This course is the first in a sequence of three. It describes the two basic PGM representations: Bayesian Networks, which rely on a directed graph; and Markov networks, which use an undirected graph. The course discusses both the theoretical properties of these representations as well as their use in practice. The (highly recommended) honors track contains several hands-on assignments on how to represent some real-world problems. The course also presents some important extensions beyond the basic PGM representation, which allow more complex models to be encoded compactly....

Jul 13, 2017

Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!

Oct 23, 2017

The course was deep, and well-taught. This is not a spoon-feeding course like some others. The only downside were some "mechanical" problems (e.g. code submission didn't work for me).

Filter by:

By Michael B

•Dec 12, 2019

Honors seems like a must to full instill concepts/implementation

By Anshuman S

•May 08, 2019

I would recommend adding some supplemental reading material.

By Jhonatan d S O

•May 25, 2017

Rich content and useful tools for applying in real problems

By Alberto C

•Dec 01, 2017

Theory: Very interesting. Assignments: not so useful.

By Yuanduo H

•Jan 20, 2020

Five stars minus the week 4 coding homework

By Arthur B

•Jan 08, 2017

More feedback from TA would be appreciated

By Myoungsu C

•Dec 26, 2018

Writing on the ppt is not clear to see.

By Soumyadipta D

•Jul 16, 2019

lectures are too fast otherwise great

By Sunsik K

•Jul 31, 2018

Broad introduction to general issues

By Tianyi X

•Feb 20, 2018

Lack of top-down review of the PGM.

By Sunil

•Sep 12, 2017

Great intro to probabilistic models

By Nikesh B

•Nov 06, 2016

Excellent

By tyang16

•Jun 20, 2019

too hard

By Yashwanth M

•Jan 05, 2020

Good

By Paul C

•Oct 31, 2016

I found plenty of useful information in this course overall but lectures often spent too much time dwelling on the detail of simpler concepts while more complex areas, and sometimes critical information that was later built upon, were only touched briefly or sometimes skipped entirely. I missed a sense of continuity as we skipped from model to model with a minimum of time spent on how the models complement each other and their relative strengths and weaknesses in application.

The way data structures were defined in the code was particularly difficult to deal with. The coding exercises all suffered as a result. It ended up taking way too much time to figure how to decode the data and trace logic around it. This meant that grasping concepts and learning from the questions came in a distant second priority to debugging.

Dr Koller mentioned that the material is aimed at postgraduates. I felt that the level of content covered here would just as easily be grasped by most undergraduates in technical disciplines if it had been delivered in a more structured manner with clearer progression across models (conceptually and mathematically) and better code examples. When delivering in this format, allowances need to be made for the facts that tutorial sessions do not exist and the possibilities for informal Q&A are limited so any gaps become very difficult for students to fill in themselves.

Despite the above shortcomings I'm glad I did the course and I would still recommend it to someone interested in graphical models as it does cover the basics well enough to make a decent start. I'm not sure whether or not I'd recommend the programming exercises as they are a significant time sink but at the same time, without spending time attacking the programming problems the concepts are not likely to gel based on the video and quizzes alone.

By Nicholas E

•Oct 29, 2016

The course was very interesting and thought-provoking. I found the introduction to probabilistic graphical models (PGMs) and their properties struck a nice balance between intuition and formalism. The discussions highlighted exciting aspects of their power in simplifying complex problems involving uncertainty. However, I still do not feel I could propose convincing PGMs for real-world problems. There are examples in the course, but they are far removed from being concrete applications. I would have preferred there be an in depth analysis of an application of PGMs in the literature over the lengthy programming assignments. I am an experienced programmer with over 5 years of experience in many languages including MATLAB/Octave and I sometimes found it uninspiring to solve toy problems, not due to the difficulty in using the programming language, but rather because after the assignment had been completed I felt I had not really learnt much more than I would have from just watching the lectures, although, if you are interested in getting experience with MATLAB/Octave, the programming assignments are good practice. I qualify this in stating that I have not yet completed the next two courses on PGMs; this course may present an essential foundation that is necessary for the upcoming courses, and in any case provoked my interest in learning more about them

By Mahendra K

•Oct 04, 2017

The course is highly theoretical. Would have been great if it was paced well and driven from real world examples. I am not saying that there are no examples. But it'd have been better if the concepts were driven via some real world examples instead of first talking about the concept and then its applications.

What would have been even better if Python was an option for PAs. Octave can't be used in industry setting where the amount of data is really large. Both Python and Octave should have been an option so that the student can decide for themself.

By John E M

•Apr 01, 2018

Lectures were OK and quizzes and exams appropriately difficult. But Labs were pretty difficult especially lab 4 which I ended up surrendering on. This means I didn't do the accompanying quiz and gave up on the possibility of honors recognition as well.

While labs don't have to be as hand-holding as the DeepLearning class by Coursera, it would be nice to get more help and maybe not submit errors for the parts I haven't tackled yet when submitting (as DeepLearning and MachineLearning courses figured out how to do).

By Kervin P

•Jan 05, 2017

This is an amazing course, and taught by an extremely talented and accomplished professor. I believe it's a must for anyone in AI/ML or Statistical Inference. The problem is that you're essentially on your own the entire course. There isn't any community or TA help to speak off. And the project is done in Matlab, so you end up wrestling with Matlab or Octave instead of actually doing and learning. I still recommend the course, but that's only because the material is so extremely important.

By Daniel S

•Dec 11, 2019

Prof. Koller is exceptional. However, the focus of the course is toward the "theory" and less towards applications, unless one chooses to complete the Honors section of the course. I personally did not have the time to learn a new language syntax to attempt the Honors section...which is a shame. I do hope that this course is updated where R/Python replaces Octave/MatLab, because it would allow professional analysts more opportunity to explore the Honors content. Thanks!

By Christos G

•Mar 09, 2018

Quite difficult, not much help in discussion forums, some assignmnents had insufficient supporting material and explanations, challenging overall, I thought at least 3-4 times to abandon it.

By Siavash R

•Aug 11, 2017

For me this was a difficult course not because of the material, but because of the teaching style. I don't think Dr. Koller is a very good teacher.

By Roman G

•Nov 04, 2016

The audio is VERY VERY poor.

That makes it very hard to understand what Prof Kohler is trying to impart on us..

I often lost track

By Xingjian Z

•Nov 02, 2017

Fun topic. But the explanation of the mentor is somewhat vague and the material is sometimes outdated and misleading.

By Ujjval P

•Dec 13, 2016

Concepts covered in quiz and assignments are not covered well in the lecture videos, can be much better.

- AI for Everyone
- Introduction to TensorFlow
- Neural Networks and Deep Learning
- Algorithms, Part 1
- Algorithms, Part 2
- Machine Learning
- Machine Learning with Python
- Machine Learning Using Sas Viya
- R Programming
- Intro to Programming with Matlab
- Data Analysis with Python
- AWS Fundamentals: Going Cloud Native
- Google Cloud Platform Fundamentals
- Site Reliability Engineering
- Speak English Professionally
- The Science of Well Being
- Learning How to Learn
- Financial Markets
- Hypothesis Testing in Public Health
- Foundations of Everyday Leadership

- Deep Learning
- Python for Everybody
- Data Science
- Applied Data Science with Python
- Business Foundations
- Architecting with Google Cloud Platform
- Data Engineering on Google Cloud Platform
- Excel to MySQL
- Advanced Machine Learning
- Mathematics for Machine Learning
- Self-Driving Cars
- Blockchain Revolution for the Enterprise
- Business Analytics
- Excel Skills for Business
- Digital Marketing
- Statistical Analysis with R for Public Health
- Fundamentals of Immunology
- Anatomy
- Managing Innovation and Design Thinking
- Foundations of Positive Psychology