Chevron Left
Back to Python for Data Science, AI & Development

Learner Reviews & Feedback for Python for Data Science, AI & Development by IBM

26,154 ratings
4,372 reviews

About the Course

Kickstart your learning of Python for data science, as well as programming in general, with this beginner-friendly introduction to Python. Python is one of the world’s most popular programming languages, and there has never been greater demand for professionals with the ability to apply Python fundamentals to drive business solutions across industries. This course will take you from zero to programming in Python in a matter of hours—no prior programming experience necessary! You will learn Python fundamentals, including data structures and data analysis, complete hands-on exercises throughout the course modules, and create a final project to demonstrate your new skills. By the end of this course, you’ll feel comfortable creating basic programs, working with data, and solving real-world problems in Python. You’ll gain a strong foundation for more advanced learning in the field, and develop skills to help advance your career. This course can be applied to multiple Specialization or Professional Certificate programs. Completing this course will count towards your learning in any of the following programs: IBM Applied AI Professional Certificate Applied Data Science Specialization IBM Data Science Professional Certificate Upon completion of any of the above programs, in addition to earning a Specialization completion certificate from Coursera, you’ll also receive a digital badge from IBM recognizing your expertise in the field....

Top reviews


Nov 17, 2019

it becomes easier wand clearer when one gets to complete the assignments as to how to utilize what has been learned. Practical work is a great way to learn, which was a fundamental part of the course.


May 16, 2020

The syllabus of the course takes you in a roller-coaster ride.\n\nFrom basic level to advance level and you won't feel any trouble nor hesitate a bit.\n\nIt's easy, it's vast, and it's really usefull.

Filter by:

4101 - 4125 of 4,413 Reviews for Python for Data Science, AI & Development

By Abdallah B

Oct 18, 2020

For beginners

By Rohit P

Apr 25, 2019

can do better

By 赵圆方

Mar 4, 2019

Less content

By Simmi M

Dec 9, 2021

nice course

By Tiantian W

Jun 1, 2019

Too basic.

By Ipsit b

Dec 26, 2018

it is good

By Fabio B

Mar 14, 2019

Too basic

By Leonard C

Jul 30, 2021

too easy

By Yuhao L

Jun 25, 2020

Too easy

By mostafaabuzeid

Jan 8, 2020

It's Ok

By Γεώργιος Κ

Aug 23, 2019


By Wei w

Nov 23, 2021



Feb 12, 2021


By Chakradhar K

Jun 5, 2020


By Karumanchi N

May 21, 2020


By Anastasios B

Jul 6, 2021

I was very excited for this course, but felt underwhelmed overall. I have some programming background, so expected the course to seem a bit slow having been introduced to topics such as basic data types in Python before. Week 1 material, for example, was simple enough to go through in less than a day. As the course progressed to more complex and interesting topics (e.g. APIs, Webscraping, etc.), however, the course seemed incredibly rushed. Instead of understanding the set-up, it felt as though the lectures simple flashed multi-lines of code. The labs similarly seemed to grow in complexity, but shrink in explanations. The labs often incorporated libraries or methods/functions that had not been referenced in the lectures, often with little added explanation/introduction. Similarly, the incorporation of the Watson engine seemed like unnecessary advertising. It was not necessary to understand Python for data science and AI as part of the exercises. So much time was spent explaining how to add arrays, while it took 4 minutes to go through summarizing dealing with csv, JSON, and XML files. It also seems that later lectures had more typos in slides, again giving the impression that the later sections were rushed. Even the final lab randomly referenced a library for processing image files, which seemed to come out of left field. The course could've stopped at Week 4 or maybe split the focus between pandas and numpy between Weeks 4 and 5. Or more focus on exception handling or classes and objects might've been useful. Use of Jupyter notebook is helpful (it really adds to nice-looking labs), but I think it would've been better to have files/resources that could be downloaded and saved locally. That way, any files written/read could also be inspected more closely. Given the title of the course (and IBM as the provider), I would've expected more. With the exception of the weak Week 5, the rest of the topics seemed more like an intro to programming (using Python as the language of choice), rather than a focus of Python for Data Science, AI & Development.

By Kalin T

Jul 10, 2020

Generally, the course is very informative and useful.

However, the Python for Data Science and AI course is anything but helpful.

The course requires the students to open a free IBM Cloud account, which is practically impossible in my case for unknown reasons.

The IBM Cloud service is essential part of the certificate program, as it is used in most of the courses, but, however, impossible to use.

IBM Watson Studio is a tool developed for Machine Learning and a part of the IBM Cloud service and an essential part of the course, but can not be used without a cloud account...

I think the above sentence says it all.

Through threads in the forum I requested a solution for my issue, which many other seemed to have. I received a few answers to my inquiry, suggesting a few workarounds like using a non-generic e-mail or at least a GMail, changing my network settings and so on.

None of them seemed to work.

The solution that was suggested at the end was to download the file from a suggested link, run the code locally and upload the result to GitHub...

Seriously?!... o.0

A few e-mails sent to IBM Cloud support remained unanswered.

The saga above, as well as the lack of exercises, non-working code in the lectures and LAB really made me question my choice of certificate...

The course does not contain much more information than the one you will find in the book by Murtaza Haider, parts of which are included in the reading sections of the course. If you are wondering if it is better to spend $35 each month on Coursera, or to buy the book for $20 and learn the same stuff... Well, I think you have your answer.

I would not be recommending the course to anyone, as I am not sure If they will cope with the frustration around the process of finishing it.

By Trang T L

May 10, 2020

Sometimes I got freaked out when I completed a course with flying colors and still felt like I didn't understand anything. Unfortunately, that's exactly my experience with this course, Python for Data Science and AI offered by IBM.

If you are attracted by the title, or by the name IBM, then I advise you to stay away from it. There is nothing remotely data science or AI in this course. It should have been called Introduction to Python ,or Python for Beginners, but there are much better courses on this topic, such as those offered by the University of Michigan.

Here is why it is bad: All the videos feature the same robotic voice rushing through basic concepts as if someone is just reading from a textbook. I wonder if the narrator is an AI, not a real human. I could have overlooked that if the content is actually good. In contrast, its scope is very narrow, even for a beginner course. There is no walk through of common Python challenges and mistakes to solidify the concepts. and again, you are going to pick up more Python knowledge from other courses.

Worse, the exercises just promote rote learning and the ability to use IBM's products. There is just not enough practice exercises to help learners understanding. Most of my time spent on this course is actually dedicated to figuring out how to set up IBM Studio, or whatever it is called. I doubt anyone is going to benefit anything from this course.

I've always admired IBM's achievement, but it takes another skill set to deliver a good online course.

By Cameron W

Jun 30, 2021

W​hat the course covered isn't bad, but the presentation is far from polished. There are many errors in the text and in the video narration, and the videos aren't well edited. The errors are mostly small, but they disrupt learning and give the impression that the course was written in a rush, without sufficient proof-reading or testing. In addition to typos (including in the video scripts), the logic of the course also isn't great: methods and JSON, for example, are both mentioned many times before they are explained. Methods relating to specific data types are discussed in week 1, but methods as a concept isn't introduced until later. JSON data are referred to a lot, but it is only in the final week's lab that JSON is defined and explained. There are also long-reported bugs in the lab interface, which are not adequately investigated or fixed (reports of being unable to share to Github Gists since early last year, but the only responses to these are workarounds or "it works for us"). None of this inspires me to try other IBM offerings.

In short, r​ather than teaching students to code in Python or analyse data, this course is more of a "taster". It gives you some idea of how Python accesses and handles data, but it lacks the depth and practical components to really give a student the skills needed to tackle data science problems - to even know where to start. There are way better ways to learn Python, and I presume way better ways to learn data science.

By Gavin M

Mar 9, 2022

The course content was helpful, but brief. I found myself browsing for additional information to grasp some of the elements of python. For example, the numpy 2d elements went by very quickly.

I found using Jupyter awkward, and I feel the user would be more engaged in the course if they had the choice to operate on their own IDE; install their own modules; and create their own minature projects to get a better handle on Python, and get better at coding in general. For example, I would be able to tell you what is missing from a block of code that covers an example of a function, but I would struggle to write the same block if prompted.

Although I have a very good knowledge of the theory behind python now, I came out of this course only marginally better at actually writing code. If that was the intention, then I woudl give 5 stars, but since this is the prerequisite to the next course called Python Project for AI and Application Development. It sounds like this course (Python for Data Science, AI & Development) was meant to get you well versed in actually writing Python.

By Sneha G

Oct 4, 2021

The screenshots in the labs for making accounts in IBM cloud website is outdated.

There are too many repetitions.

The labs are nothing but running the already written code, hardly one or two lines of code is asked to be written, that too in not all the labs. The already written code, which has to be executed are same as what is shown in the video, not even 1% of difference. It should be about the same topic but a different problem, similar to what is shown in the video, not exactly the same. Instead of giving out fully written code, it should have blanks to fill in or hints given to the student for help. Just by executing the already written code doesn't help in learning. Writing is as important part of learning (especially code writing) as reading. Writing helps brain exercise, reading does not. Also, personally, I don't like this presentation form of learning; it's kind of boring and mind gets diverted very easily. I am having to rewind too many times.

It seems like he instructor created the topics and given notes to a junior to work on the course creating project!

By Gianna H

Jul 20, 2020

The first three courses in the Applied AI specialisation are much better than this one. During weeks 1-4, it remained a mystery how you're supposed to apply the content of the videos in practice. The videos are ok, but by far not as good and easy to follow as other videos here on coursera. In week 5, the final exam felt like completely out of the blue and not comparable to the weekly quizzes (which are far to short and easy to really be informative about where you stand).

I would not recommend this course, I myself only followed through with it because it is part of the specialization. I would say I got a first impression of Python, but so far I wouldn't trust myself with writing any code and I don't feel like I've gained long-term knowledge.

If I ever really needed Python in my job, I'd start over and take another course.

Note: in my experience, this is an exception. I've liked the other courses I took on coursera (some of which were also by IBM) much better!

By Heinz D

Sep 29, 2019

The lectures are very focused, which is positive. Unfortunately, there are no lecture slides to download. The lecture voice is possibly machine-generated and there is no indication of empathy, which is kind of a cultural shock after having passed four of Dr. Chuck's great python courses. For unknown reasons I had to open each quiz twice to be able to submit. IBM's Developer Skills Network hosts the Jupyter notebooks and I wasted a lot of my time facing missing notebooks, timeouts, dying kernels, and slowly starting Docker containers. I'd rather like to download the notebooks and run them on my local machine (I found out how to do this by end of the 4th week). The notebooks are filled with IBM advertisements. A registration at IBM's Watson is necessary, but the setup descriptions are outdated and the setup is not uncomplicated.

By Michael S

Jul 12, 2020

1. I wish the labs had more doing and less reading. Especially since the labs and the videos cover pretty much the same stuff.

2. There are small errors everywhere in this course! It would be so much better if they just had one human take the time and go through the entire course from beginning to end, fixing any mistakes. For example sometimes the quiz questions in the videos pop up right before they explain something, not after. One of labs contains a table that is illegible. One of the labs asks a quiz question not covered by the lab itself. And the first to graded quizes are before the labs and they clearly should be after. I'm only in week two and these are all the mistakes I've found so far.

By Frazer L

Jan 5, 2021

Not exactly a beginner friendly course. Videos are of poor quality like watching a bad powerpoint, voice sounds robotic. Sentences are cut off midway for a quick quiz question. The skills labs were oke, good for extra info on how to write code though the assignments just jumped to a more experienced level than beginner half way through the course. The quizes are to easy...

First course in the specialization just feels like a promotion for IBM software, a lot of info on how to open and read files in different programs without having to use them.. Just explain what programs are used in data science and why. Then when you actually have to use them you can dive deeper.