Very well structured course, and very interesting too! Has made me want to pursue a career in machine learning. I originally just wanted to learn to program, without true goal, now I have one thanks!!
great experience and learning lots of technique to apply on real world data, and get important and insightful information from raw data. motivated to proceed further in this domain and course as well.
By xuhp
•great
By shubham
•great
By MD M H
•Nice
By ISHAN M
•Good
By �SADHARAN G
•good
By RAGHUVEER S D
•good
By N. S
•good
By Arif S
•good
By parmar p
•nice
By Miriam R
•good
By Light0617
•nice
By Shishir N
•N
i
c
e
By Jimut B P
•Nice
By Yi-Yang L
•Nice
By SURAJ K
•osm
By Shilpi G
•...
By Magdiel B d N A
•ok
By PREDEEP K
•ok
By Andrew G
•T
By Junaid L S
•G
By Thomas
•g
By Oleh Z
•G
By Piotr B
•a
By Martín J M
•Course is excellent in content. Not heavy in mathematics (altough, I would recommend reading how models are supposed to work), the objectiv eis to have a practical understanding of how machine learning is applied and the important concepts to consider for a succesful model building. The focus is to have hand-on experience with the sklearn library.
I don't grant 5 starts (I hesitated for 4), as the course was designed back in 2018, therefore, you sometimes struggle with legacy libraries. Another issue, is that there are some hiccups when it comes to assignment uploads (for instance, the address of csv files!). As a student, this will make you hesistate and question wether the instructor screwed up with the autograder or not, which IS stressful.
Quiz 4 suddenly became non-forgiving, multiple choice answer have to be answered with 100% certainity to score full point. Quite anti-climatic, considering that previous quizes didn't work like that.
Final assignment is quite challenging, and might make the new student suffer.
I appreciate the instructors and Kevyn Collins for this great course. Now that I have a better picture, I get insights on how to focus my research efforts in sensor research and development.
By Jun-Hoe L
•My actual rating is 3.5 stars. This is the best course yet in this Specialization.
Pros: I prefer Professor Collin-Thompson's delivery compared to Professor Brook in the previous modules. I think he gives a good overview and sufficient depth for an applied course, compared to Professor Brooks which I find to be quite superficial most of the time, and weirdly detailed in other parts. Assignment is good enough for reinforcement learning and definitely better planned. I also appreciate the link to additional readings which are quite informative.
Cons: Assignment auto-grader. This is still the biggest letdown of all the courses in this specialization Codes which work on your laptop or suggested elsewhere on Stackoverflow etc fails to pass the autograder, so 30-40% of the time of the assignment is spent on wrangling the code to pass the autograder.
Note: If i haven't taken a Machine Learning course by Professor Andrew Ng, this course would definitely be much harder. This course doesn't go to much into the background knowledge,and they mentioned this many times. But I appreciated the applied aspect, since this was what I was looking for.