Chevron Left
Back to Visual Perception for Self-Driving Cars

Learner Reviews & Feedback for Visual Perception for Self-Driving Cars by University of Toronto

4.7
stars
526 ratings

About the Course

Welcome to Visual Perception for Self-Driving Cars, the third course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the main perception tasks in autonomous driving, static and dynamic object detection, and will survey common computer vision methods for robotic perception. By the end of this course, you will be able to work with the pinhole camera model, perform intrinsic and extrinsic camera calibration, detect, describe and match image features and design your own convolutional neural networks. You'll apply these methods to visual odometry, object detection and tracking, and semantic segmentation for drivable surface estimation. These techniques represent the main building blocks of the perception system for self-driving cars. For the final project in this course, you will develop algorithms that identify bounding boxes for objects in the scene, and define the boundaries of the drivable surface. You'll work with synthetic and real image data, and evaluate your performance on a realistic dataset. This is an advanced course, intended for learners with a background in computer vision and deep learning. To succeed in this course, you should have programming experience in Python 3.0, and familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses)....

Top reviews

AQ

Feb 27, 2020

The course has proved to another milestone in furthering my understanding of robotics, computer vision, machine learning and autonomous driving vehicles.

HS

Nov 7, 2020

Really really great course. I would like to work with Prof.Waslander at any project. I will advise this course to anyone interested. Thanks Coursera!

Filter by:

76 - 77 of 77 Reviews for Visual Perception for Self-Driving Cars

By Mathew S

Apr 25, 2022

By Vishwaswaroop B

Dec 30, 2021