This course will equip you with the skills to build high-performance, intelligent data solutions. You will gain hands-on experience by building robust semantic models in Power BI, implementing the groundbreaking DirectLake mode for lightning-fast analytics, and leveraging the power of Copilot in Fabric to dramatically boost your productivity. The course also covers making critical decisions on connection modes and semantic models to optimize performance and cost. By the end of this course, you will be able to analyze an organization's needs and recommend a comprehensive optimization strategy that improves performance while managing costs.

Genießen Sie unbegrenztes Wachstum mit einem Jahr Coursera Plus für 199 $ (regulär 399 $). Jetzt sparen.

Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: SQL
- Kategorie: Cost Control
- Kategorie: Performance Tuning
- Kategorie: Data Lakes
- Kategorie: Enterprise Architecture
- Kategorie: Process Improvement and Optimization
- Kategorie: Data Pipelines
- Kategorie: Natural Language Processing
- Kategorie: Microsoft Azure
- Kategorie: Real Time Data
- Kategorie: Data Modeling
- Kategorie: Microsoft Copilot
- Kategorie: Dashboard
- Kategorie: Process Optimization
- Kategorie: Power BI
- Kategorie: Data Architecture
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
28 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 5 Module
Build the foundation for enterprise-wide self-service analytics by mastering Power BI semantic model development in Microsoft Fabric. You'll design reusable semantic models that connect to Lakehouse data, create sophisticated business calculations using DAX programming language, implement proper table relationships, and optimize models for performance. Through hands-on exercises and guided demonstrations, you'll learn how well-structured semantic models enable consistent business logic, accurate cross-filtering, and scalable analytics performance. This module provides the expertise needed to create semantic models that serve as a reliable foundation for all downstream analytics and reporting. Note:Unlike traditional import mode, DirectLake creates a direct connection to your Lakehouse data. When column names change, tables are restructured, or data types are modified, your Power BI reports can fail immediately. Best Practice: Define a version-controlled abstraction layer (views or gold tables) before connecting Power BI to DirectLake mode. This prevents schema changes from breaking visuals. Quick Recovery Tips: Keep a backup semantic model (.pbix) that you can quickly republish Use consistent naming conventions to minimize future conflicts Consider using views in your lakehouse for an abstraction layer Set up alerts to monitor report failures after schema changes
Das ist alles enthalten
4 Lektüren7 Aufgaben
Implement advanced data connectivity and refresh strategies to maximize performance while minimizing data duplication in Microsoft Fabric. You'll explore DirectLake mode for real-time analytics on Lakehouse data, compare its benefits to traditional import approaches, design effective partitioning strategies for large datasets, and configure incremental refresh policies that optimize update processes. Through practical exercises and performance comparisons, you'll develop the skills to implement data connections that balance query performance with freshness requirements. This module equips you with techniques to handle enterprise-scale datasets efficiently while maintaining responsive analytics experiences. Note: For optimization, large datasets may exceed trial compute credits during refresh operations. Start with a subset of data and review Incremental Refresh Best Practices before scaling up.
Das ist alles enthalten
6 Aufgaben
Extend the reach and intelligence of your Power BI solutions by implementing embedded analytics and AI-powered visualizations. You'll learn to securely publish and share Power BI reports, embed interactive dashboards into applications and portals, implement AI visuals that automatically discover patterns in your data, and configure natural language capabilities that enable conversational analytics. Through hands-on implementation exercises, you'll create compelling analytics experiences that integrate seamlessly with business applications while leveraging artificial intelligence to enhance insight discovery. This module bridges the gap between standard reporting and intelligent, accessible analytics.
Das ist alles enthalten
1 Lektüre5 Aufgaben
Accelerate data development workflows through AI-powered assistance and automation in Microsoft Fabric. You'll harness Copilot's capabilities to build data pipelines using natural language, generate optimized SQL queries, create documentation summaries, configure Data Agents for automated tasks, and implement lightweight automation with Copilot Studio. Through guided explorations and practical exercises, you'll experience how AI assistance transforms data development productivity while maintaining quality and best practices. This module demonstrates how conversational AI can dramatically reduce development time while enabling broader participation in data engineering activities. Important Safety Note: Always review generated steps before execution, never paste secrets or sensitive information into AI prompts, and verify the preview/GA status of Copilot features in your tenant before implementation.
Das ist alles enthalten
2 Lektüren5 Aufgaben
Master advanced architectural design and optimization techniques that ensure your Microsoft Fabric implementation is performant, cost-effective, and future-ready. You'll design mesh architectures with decentralized data domains, apply systematic performance optimization through caching, partitioning, and indexing, implement comprehensive cost monitoring and control strategies, and explore machine learning integration options. Throughout the module, you'll use a decision log template to capture cost/performance trade-offs for each architectural choice (e.g., DirectLake vs Import, Lakehouse vs Warehouse) to build systematic decision-making skills. Through architecture workshops and optimization exercises, you'll develop the skills to design, optimize, and govern enterprise-scale data platforms. This module provides the expertise needed to create sustainable, high-performance data architectures that balance business needs with technical and financial considerations.
Das ist alles enthalten
5 Aufgaben
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,


