Analyze & Deploy Scalable LLM Architectures is an intermediate course for ML engineers and AI practitioners tasked with moving large language model (LLM) prototypes into production. Many powerful models fail under real-world load due to architectural flaws. This course teaches you to prevent that.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Infrastructure as Code (IaC)
- Kategorie: Large Language Modeling
- Kategorie: Kubernetes
- Kategorie: Scalability
- Kategorie: LLM Application
- Kategorie: Analysis
- Kategorie: Application Performance Management
- Kategorie: Application Deployment
- Kategorie: MLOps (Machine Learning Operations)
- Kategorie: Systems Analysis
- Kategorie: Retrieval-Augmented Generation
- Kategorie: Cloud Deployment
- Kategorie: Performance Analysis
- Kategorie: Release Management
- Kategorie: Performance Testing
- Kategorie: Configuration Management
- Kategorie: Containerization
- Kategorie: Performance Tuning
- Kategorie: Model Deployment
- Kategorie: Continuous Delivery
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Januar 2026
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 3 Module
This module establishes the foundational mindset that "performance lives in the pipeline." Learners will discover that a large language model (LLM) application is a multi-stage system where overall speed is dictated by the slowest component. They will learn to deconstruct a complex Retrieval-Augmented Generation (RAG) architecture, trace a user request through it, and use system diagrams to form an evidence-based hypothesis about the primary performance bottleneck.
Das ist alles enthalten
2 Videos1 Lektüre2 Aufgaben
In this module, learners move from hypothesis to evidence. They will learn to use system logging and profiling data to quantify the precise latency contribution of each stage in an LLM pipeline. The focus is on designing small, reversible, and hypothesis-driven experiments to prove or disprove their initial findings and distinguish a performance bottleneck's root cause from its symptoms.
Das ist alles enthalten
1 Video2 Lektüren2 Aufgaben
This module bridges the gap between a working prototype and a resilient, production-ready service. Learners will design and manage declarative deployments using Helm and Kubernetes, package a multi-component RAG stack, and implement Horizontal Pod Autoscaling (HPA) for dynamic, cost-efficient scaling. They will also master the critical operational skills of performing controlled, zero-downtime rollouts and rapid rollbacks.
Das ist alles enthalten
2 Videos2 Lektüren2 Aufgaben
Dozent

von
Mehr von Design and Product entdecken
Status: Vorschau
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.




