By the end of this course, learners will be able to analyze core deep learning architectures, apply neural networks to visual data, and evaluate computer vision techniques for real-world problem solving. Learners will develop the ability to interpret how models learn from images, select appropriate architectures for specific tasks, and implement solutions for visual understanding and generation.

Analyze and Apply Deep Learning for Computer Vision
Bald zu Ende: Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Empfohlene Erfahrung
Was Sie lernen werden
Analyze deep learning architectures and apply neural networks to visual data.
Implement computer vision techniques such as detection, segmentation, and image generation.
Evaluate and select appropriate models and workflows for real-world visual intelligence problems.
Kompetenzen, die Sie erwerben
- Kategorie: Artificial Neural Networks
- Kategorie: Recurrent Neural Networks (RNNs)
- Kategorie: Computer Vision
- Kategorie: Model Evaluation
- Kategorie: Network Architecture
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Applied Machine Learning
- Kategorie: Deep Learning
- Kategorie: Feature Engineering
- Kategorie: Generative Model Architectures
- Kategorie: Generative AI
- Kategorie: Transfer Learning
- Kategorie: Convolutional Neural Networks
- Kategorie: Image Analysis
- Kategorie: Data Processing
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Januar 2026
7 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces the fundamental principles of deep learning that underpin modern artificial intelligence systems, with a focus on neural network architectures, learning mechanisms, and advanced paradigms used in visual intelligence applications.
Das ist alles enthalten
6 Videos4 Aufgaben
This module focuses on applying deep learning techniques to computer vision tasks, covering image preprocessing, feature extraction, object detection, image segmentation, and visual content generation in real-world scenarios.
Das ist alles enthalten
5 Videos3 Aufgaben
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,





