Artificial intelligence is transforming healthcare by improving diagnosis, enhancing patient care, and streamlining clinical workflows. If you’re a technologist aiming to apply your skills to healthcare challenges, or a healthcare professional eager to understand and shape the AI tools you’ll work with, this course is for you.

Morgen endet die Aktion: Holen Sie sich einen Black Friday Boost mit $160 Rabatt auf 10.000+ Programme.


Foundations of AI in Healthcare
Dieser Kurs ist Teil von Spezialisierung für Artificial Intelligence for Healthcare


Dozenten: Ramesh Sannareddy
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Describe how AI and machine learning are transforming healthcare delivery, clinical workflows, and patient outcomes.
Explain ethical frameworks, regulations, and governance standards relevant to AI in healthcare.
Summarize common challenges and solutions related to bias, privacy, and integration in AI healthcare implementation.
Design and implement machine learning workflows tailored to healthcare datasets and requirements.
Kompetenzen, die Sie erwerben
- Kategorie: Artificial Intelligence
- Kategorie: Clinical Informatics
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Data Analysis
- Kategorie: Health Informatics
- Kategorie: Clinical Research
- Kategorie: Healthcare Industry Knowledge
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
November 2025
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
In this module, you will learn about the basics of artificial intelligence in healthcare. The module begins with tracing the historical evolution of AI, followed by machine learning concepts and how these technologies are transforming clinical workflows across diagnosis, treatment, and patient care. Through real-world examples, you will learn how AI is being integrated into healthcare. You will gain insights into the opportunities and limitations presented by this integration. The module concludes with a forward-looking discussion on the challenges, innovations, and future trends in AI-driven healthcare, preparing you to think critically about the role of AI in modern medical practice.
Das ist alles enthalten
7 Videos1 Lektüre4 Aufgaben6 Plug-ins
This module addresses the ethical, legal, and regulatory dimensions of AI implementation in healthcare settings. Students will examine fundamental ethical principles, including autonomy, beneficence, and justice, as they apply to AI-assisted medical decision-making and patient care. The module provides comprehensive coverage of bias detection and mitigation strategies, helping students understand how algorithmic fairness impacts health equity and patient outcomes across diverse populations. Students will explore privacy-preserving AI technologies and cybersecurity frameworks essential for protecting sensitive health information in AI systems. The module also covers the global regulatory landscape, including FDA guidance and international standards, while providing practical frameworks for establishing AI governance and risk management processes within healthcare organizations.
Das ist alles enthalten
6 Videos1 Lektüre4 Aufgaben1 Unbewertetes Labor5 Plug-ins
This hands-on module provides students with practical skills for developing and implementing machine learning solutions in healthcare environments. Students will master the complete ML workflow from problem definition to model development, with special emphasis on healthcare-specific considerations such as regulatory compliance and clinical validation requirements. The module covers both supervised and unsupervised learning techniques through real-world medical applications, including diagnostic prediction, patient segmentation, and clinical outcome forecasting. Students will learn advanced feature engineering techniques for medical data. The module concludes with practical guidance on integrating ML models into clinical decision support systems, addressing implementation barriers, and measuring clinical impact in real healthcare settings.
Das ist alles enthalten
6 Videos1 Lektüre4 Aufgaben1 Unbewertetes Labor5 Plug-ins
This final module consolidates the knowledge gained throughout the course and guides learners through a comprehensive, hands-on application of AI in a healthcare scenario. Learners will revisit key concepts, engage in a case-based project or lab, and demonstrate their understanding through practical problem-solving. The module also includes a final assessment and offers reflection activities to help learners identify future learning pathways and career opportunities in healthcare AI. Emphasis is placed on real-world relevance, ethical practice, and readiness for continued specialization. This capstone experience reinforces both conceptual mastery and practical competence.
Das ist alles enthalten
1 Video2 Lektüren1 Aufgabe1 peer review1 Diskussionsthema2 Plug-ins
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
von
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser TestzeitraumUniversity of Colorado System
Status: VorschauNortheastern University
Status: VorschauAI CERTs
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Yes! You'll work with two guided labs: one on detecting bias in healthcare data using realistic datasets, and another on predicting diabetes with the real Pima Indians Diabetes Dataset. The code is provided for you to review and run, so you can see how AI models are applied in real healthcare contexts.
No extensive coding knowledge required. The labs use pre-written Python code in Jupyter Notebook that you'll review and run to understand how healthcare AI models are built, trained, and tested. The focus is on understanding the process, not writing code from scratch.
The course emphasizes responsible AI throughout. You'll explore real examples of bias detection, fairness, and privacy considerations, and learn how ethical principles guide AI model development and deployment in clinical settings.
Weitere Fragen
Finanzielle Unterstützung verfügbar,

