By the end of this course, learners will be able to analyze machine learning fundamentals, apply NumPy for numerical computing, visualize data with Matplotlib, and manage structured datasets using Pandas. They will also be able to evaluate supervised and unsupervised models in scikit-learn, optimize performance through validation techniques, and implement advanced applications such as face recognition, text classification, and sentiment analysis.

noch 5 Tage: Holen Sie sich einen Black Friday Boost mit $160 Rabatt auf 10.000+ Programme.Sparen Sie jetzt.


Machine Learning in Python: Analyze & Apply
Dieser Kurs ist Teil von Spezialisierung für AI Machine Learning with R & Python Projects

Dozent: EDUCBA
Bei enthalten
Was Sie lernen werden
Apply NumPy, Pandas, and Matplotlib for data analysis & visualization.
Build, train, and validate supervised & unsupervised ML models.
Implement NLP, face recognition, and text classification projects.
Kompetenzen, die Sie erwerben
- Kategorie: Supervised Learning
- Kategorie: Pandas (Python Package)
- Kategorie: Data Manipulation
- Kategorie: Matplotlib
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Python Programming
- Kategorie: Text Mining
- Kategorie: Natural Language Processing
- Kategorie: Applied Machine Learning
- Kategorie: Data Visualization
- Kategorie: Feature Engineering
- Kategorie: Machine Learning
- Kategorie: Unsupervised Learning
- Kategorie: Performance Tuning
- Kategorie: NumPy
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2025
16 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
This module introduces the core concepts of machine learning and the fundamental role of NumPy in Python-based data science. Learners explore the advantages and challenges of machine learning, install and set up NumPy, and perform basic array operations. By the end, students gain a solid foundation for working with numerical data structures in Python.
Das ist alles enthalten
14 Videos4 Aufgaben
This module focuses on data manipulation and visualization using Python’s scientific libraries. Learners advance their NumPy skills with indexing and Boolean operations, visualize data through Matplotlib plots, and master structured data handling with Pandas. These tools form the backbone of efficient exploratory data analysis.
Das ist alles enthalten
15 Videos4 Aufgaben
This module introduces machine learning models through scikit-learn, covering both supervised and unsupervised approaches. Learners explore datasets, train classifiers, validate models with cross-validation, and evaluate performance metrics. By the end, they understand clustering, dimensionality reduction, and core ML workflows.
Das ist alles enthalten
13 Videos4 Aufgaben
This module covers advanced applications of machine learning, including face recognition, text classification, and natural language processing. Learners extract features, train classifiers, tune parameters, and conduct sentiment analysis. The skills gained prepare students to apply machine learning in real-world contexts.
Das ist alles enthalten
12 Videos4 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser TestzeitraumUniversity of Michigan
Status: VorschauO.P. Jindal Global University
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,

