This advanced course teaches machine learning and AI techniques for big data systems. Learners will build end-to-end ML pipelines with PySpark ML, implement supervised and unsupervised models, and apply NLP techniques at scale. The course also explores deep learning, distributed training, and integrating Generative AI into big data workflows.

Data Analytics and Machine Learning for Big Data

Data Analytics and Machine Learning for Big Data
Dieser Kurs ist Teil von Microsoft Big Data Management and Analytics (berufsbezogenes Zertifikat)

Dozent: Microsoft
Bei enthalten
Kompetenzen, die Sie erwerben
- Kategorie: Unsupervised Learning
- Kategorie: Generative AI
- Kategorie: Machine Learning
- Kategorie: Natural Language Processing
- Kategorie: Keras (Neural Network Library)
- Kategorie: Feature Engineering
- Kategorie: PySpark
- Kategorie: Transfer Learning
- Kategorie: Big Data
- Kategorie: Distributed Computing
- Kategorie: Model Evaluation
- Kategorie: Model Deployment
- Kategorie: Deep Learning
- Kategorie: Unstructured Data
- Kategorie: PyTorch (Machine Learning Library)
- Kategorie: Large Language Modeling
- Kategorie: Supervised Learning
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Text Mining
- Kategorie: Scalability
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Data Analysis
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Microsoft zur Vorlage

In diesem Kurs gibt es 5 Module
Machine learning appears quite different when data exceeds the capacity of a single system. In this section, learners explore the foundational ideas behind machine learning in big data environments and how familiar approaches change at scale. You will examine supervised and unsupervised learning, regression and classification problems, and the practical challenges that arise with massive datasets—such as scalability, distributed computing, and the need to adapt algorithms for large-scale processing.
Das ist alles enthalten
5 Videos3 Lektüren7 Aufgaben
A practical foundation for building scalable machine learning solutions using PySpark ML in big data environments. The content focuses on designing and implementing end-to-end machine learning pipelines with transformers and estimators, while developing regression, classification, and clustering models that scale across distributed systems. Emphasis is placed on real-world implementation and informed platform selection for enterprise deployments using Azure Databricks, Microsoft Fabric, and Azure HDInsight, ensuring solutions are both technically robust and operationally viable at scale.
Das ist alles enthalten
6 Videos3 Lektüren10 Aufgaben
Large-scale text analytics introduces the challenges and techniques required to process and analyze unstructured text at enterprise scale using distributed computing frameworks. The focus is on applying natural language processing (NLP) techniques in scalable architectures to support text classification, sentiment analysis, and entity and relationship extraction across massive text corpora. Emphasis is placed on practical, production-oriented approaches for handling high-volume text data, with integration of Azure Cognitive Services to enhance accuracy, scalability, and operational efficiency in real-world analytics solutions.
Das ist alles enthalten
6 Videos3 Lektüren10 Aufgaben
This module introduces deep learning fundamentals and advanced architectures specifically adapted for big data environments. Students will learn to implement neural networks for big data applications, apply transfer learning techniques with pre-trained models, and scale deep learning training across distributed clusters using modern frameworks and optimization techniques.
Das ist alles enthalten
5 Videos3 Lektüren10 Aufgaben
This module explores how generative AI transforms big data analytics by enabling intelligent, natural language–driven workflows at scale. You will learn how foundation models and large language models integrate with distributed data pipelines to automate insights, enhance analytics, and power modern data applications. Through hands-on labs, you will implement LLM integration, apply fine-tuning for domain-specific use cases, and design production-ready GenAI solutions for real-world big data scenarios.
Das ist alles enthalten
5 Videos3 Lektüren9 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Data Analysis entdecken
Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.

Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.





