The Preparing Images for AI Models course is designed for developers, engineers, and technical product builders who are new to Generative AI but already have intermediate machine learning knowledge, basic Python proficiency, and familiarity with development environments such as VS Code, and who want to engineer, customize, and deploy open generative AI solutions while avoiding vendor lock-in.

Preparing Images for AI Models
Bald zu Ende: Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Preparing Images for AI Models
Dieser Kurs ist Teil von Open Generative AI: Build with Open Models and Tools (berufsbezogenes Zertifikat)

Dozent: Professionals from the Industry
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Identify and access appropriate image datasets from public repositories for diffusion model training
Evaluate image collections for quality, diversity, and legal compliance
Apply image preprocessing and augmentation techniques to enhance dataset quality and diversity
Implement efficient workflows for processing large image collections
Kompetenzen, die Sie erwerben
- Kategorie: Data Preprocessing
- Kategorie: File Management
- Kategorie: Generative AI
- Kategorie: Data Validation
- Kategorie: Data Collection
- Kategorie: Data Management
- Kategorie: Data Cleansing
- Kategorie: Transfer Learning
- Kategorie: Data Quality
- Kategorie: Image Quality
- Kategorie: Metadata Management
- Kategorie: Data Transformation
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Januar 2026
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Machine Learning
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Coursera zur Vorlage

In diesem Kurs gibt es 4 Module
Learn how to evaluate image datasets used for AI development. You’ll explore public repositories and compare datasets based on quality, diversity, and fit for different training goals. You’ll also cover critical legal and ethical considerations, and practice techniques for managing and organizing large collections to confidently select datasets that strengthen both the accuracy and integrity of your models.
Das ist alles enthalten
3 Videos3 Lektüren1 Unbewertetes Labor
Learn the essential techniques for preparing image data prior to AI model training. You’ll apply preprocessing fundamentals such as resizing, cropping, and normalization, along with color correction and lighting adjustments to improve consistency across datasets. You’ll also manage image metadata, conduct quality assessments to remove corrupted files, and implement batch processing strategies for large image collections under memory constraints. These practices ensure your datasets are both clean and reliable for effective model development.
Das ist alles enthalten
5 Videos1 Lektüre1 Aufgabe1 Unbewertetes Labor
Learn how to apply augmentation techniques that expand and strengthen your image datasets. You’ll practice core methods such as rotation, flipping, and cropping, and explore advanced strategies like MixUp, CutMix, and pipeline-based augmentation. These approaches give you options to balance diversity with distribution integrity, ensuring your datasets remain both varied and representative. By the end, you’ll understand which augmentation techniques are most effective for different AI problems and why they are critical to building high-performing models.
Das ist alles enthalten
2 Videos1 Lektüre1 Unbewertetes Labor
Focus on creating structured, well-documented image datasets that are ready for AI model training. You’ll implement workflows for organizing images, validating dataset integrity, and ensuring annotations and metadata are consistent. You’ll also learn methods for authenticating datasets and applying quality controls that prevent bias or data leakage. These practices help you deliver datasets that are not only technically sound but also trustworthy and aligned with real-world AI development standards.
Das ist alles enthalten
2 Videos1 Lektüre1 Aufgabe1 Unbewertetes Labor
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Machine Learning entdecken
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.








