Building AI Agents for Complex Tasks is an intermediate-level course designed to equip learners with the skills to design, build, and evaluate intelligent agents that operate autonomously across dynamic, multi-step environments. Moving beyond simple chatbot flows, this course introduces learners to agent architectures that perceive context, make decisions, integrate tools, and recover from failure.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Context Management
- Catégorie : Development Testing
- Catégorie : LangChain
- Catégorie : Model Evaluation
- Catégorie : Debugging
- Catégorie : Prompt Engineering
- Catégorie : Artificial Intelligence
- Catégorie : Performance Testing
- Catégorie : Tool Calling
- Catégorie : Agentic systems
- Catégorie : LLM Application
- Catégorie : Scenario Testing
- Catégorie : AI Workflows
- Catégorie : AI Orchestration
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
This foundational lesson introduces what AI agents are and how they differ from traditional software. Learners will explore agent-environment interactions, the concept of perception, and how various types of agents—reactive, deliberative, and hybrid—handle decision-making. Through real-world examples like smart assistants and warehouse robots, learners will classify agent types and determine where each model excels or breaks down.
Inclus
4 vidéos1 lecture1 devoir
This lesson moves from theory to implementation. Learners will construct intelligent agents that integrate inputs (perception), structured reasoning (decision loops), and output (action). They'll explore core modules such as memory, planning chains, and tool execution in LangChain and Rasa. Real-world examples like Alexa’s task-based updates and LangChain agents with tools will help frame the technical walkthroughs.
Inclus
3 vidéos1 lecture2 devoirs
In the final lesson, learners will focus on evaluating how agents perform in realistic, changing environments. They'll explore testing strategies, interpret edge-case behaviors, and fine-tune agents using logs, performance feedback, and outcome tracking. Examples such as AlphaCode’s reasoning iterations and BabyAGI’s task queue refinement will help frame the concepts. This lesson culminates in the Capstone project, where learners will apply everything they've learned to design and deliver an intelligent, goal-driven agent.
Inclus
4 vidéos1 lecture4 devoirs
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.





