By the end of this course, learners will differentiate core AI concepts, construct deep neural networks, apply image and text models, develop attention-based NLP systems, and design recommender solutions.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce que vous apprendrez
Build and optimize deep neural networks using PyTorch.
Apply AI models to vision, NLP, and recommendation tasks.
Implement attention and transformer architectures effectively.
Compétences que vous acquerrez
- Catégorie : Transfer Learning
- Catégorie : Artificial Neural Networks
- Catégorie : Deep Learning
- Catégorie : Recurrent Neural Networks (RNNs)
- Catégorie : Machine Learning
- Catégorie : Convolutional Neural Networks
- Catégorie : PyTorch (Machine Learning Library)
- Catégorie : Feature Engineering
- Catégorie : Model Evaluation
- Catégorie : Data Preprocessing
- Catégorie : Computer Vision
- Catégorie : Predictive Modeling
- Catégorie : Natural Language Processing
- Catégorie : Data Transformation
- Catégorie : Artificial Intelligence
- Catégorie : Jupyter
Détails à connaître

Ajouter à votre profil LinkedIn
novembre 2025
22 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 6 modules dans ce cours
This module introduces learners to the core principles of machine learning and deep learning, exploring their methods, applications, and the evolution from perceptrons to deep neural networks.
Inclus
12 vidéos3 devoirs
This module provides hands-on exposure to essential coding platforms, tools, and frameworks like Jupyter, Google Colab, and PyTorch, while building foundational skills with tensors, gradients, and basic networks.
Inclus
15 vidéos4 devoirs
This module explores image classification through practical case studies, guiding learners to preprocess, transform, and visualize datasets, then build, train, and test deep neural networks on benchmarks like MNIST and CIFAR-10.
Inclus
18 vidéos4 devoirs
This module introduces natural language processing (NLP) tasks, including text classification with CNNs and text generation with transformers, focusing on preparing textual data, building models, and evaluating results.
Inclus
15 vidéos4 devoirs
This module dives deeper into NLP using attention-based architectures, covering sequence-to-sequence models for text translation, encoder-decoder frameworks, and best practices for training and evaluation.
Inclus
14 vidéos4 devoirs
This module extends deep learning applications to structured tabular data and recommender systems, demonstrating predictive modeling and approaches like collaborative and content-based filtering.
Inclus
7 vidéos3 devoirs
En savoir plus sur Machine Learning
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Statut : PrévisualisationUniversity of California, Davis
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,





