Evaluate & Swap Models in Java ML is a practical course that teaches you how to measure, compare, and confidently replace machine learning models in Java applications. You’ll learn why high accuracy can still lead to failure in real-world systems, and how metrics like precision, recall, F1-score, and AUC-ROC reveal the real impact of model decisions, especially with imbalanced datasets. Through hands-on benchmarking in Weka or Smile, you’ll compare multiple algorithms—Logistic Regression, Decision Trees, SVMs—and analyze trade-offs based on business consequences, not just leaderboard results.

Evaluate & Swap Models in Java ML
Cela se termine bientôt : Obtenez des compétences de niveau supérieur avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Evaluate & Swap Models in Java ML
Ce cours fait partie de Spécialisation Level Up: Java-Powered Machine Learning

Instructeur : Karlis Zars
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Apply Java ML evaluation methods using metrics alongside cross-validation to measure real-world generalization and avoid overfitting.
Benchmark multiple Java ML algorithms on the same dataset to identify the optimal model.
Design swappable machine-learning components using interface-driven architecture and the Strategy Pattern.
Compétences que vous acquerrez
- Catégorie : Applied Machine Learning
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Business
- Catégorie : Matrix Management
- Catégorie : Supervised Learning
- Catégorie : Data Preprocessing
- Catégorie : Java
- Catégorie : Machine Learning Software
- Catégorie : Software Design Patterns
- Catégorie : Decision Tree Learning
- Catégorie : Benchmarking
- Catégorie : Model Deployment
- Catégorie : Classification Algorithms
- Catégorie : Machine Learning Algorithms
- Catégorie : Model Evaluation
- Catégorie : Logistic Regression
- Catégorie : Business Metrics
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 3 modules dans ce cours
This module establishes why choosing a model should be based on evidence, not assumptions. You’ll learn how accuracy alone misleads, and how metrics like precision, recall, F1, and AUC reveal the true strengths and weaknesses of a model. We introduce dataset splits and cross-validation to ensure performance you can trust beyond the training data. By the end, you’ll understand how to interpret evaluation results in real-world business terms and avoid hidden failure modes.
Inclus
4 vidéos2 lectures1 évaluation par les pairs
This module moves from theory to applied evaluation. You’ll train and benchmark multiple ML algorithms in Java on the same dataset—Logistic Regression vs Decision Trees vs SVM—and observe how performance changes with data and task type. We break down confusion matrix insights from a user-impact perspective: which mistakes are acceptable, and which break the system. By the end, you will generate clear, comparable evaluation reports that support confident decision-making.
Inclus
3 vidéos1 lecture1 évaluation par les pairs
This module shows how to build Java applications where ML models are replaceable components—not embedded code. Using interface-driven design and the Strategy Pattern, you’ll implement architecture that enables painless upgrades and rollbacks. We discuss model lifecycle checkpoints: re-evaluation triggers, monitoring for performance drift, and when to retire a model. By the end, you’ll be equipped with a safe and scalable approach to shipping and maintaining ML systems in production.
Inclus
4 vidéos1 lecture1 devoir2 évaluations par les pairs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,

