The Fine-Tuning Image Models with Diffusion course gives learners hands-on experience adapting generative image models for custom styles and applications. The course begins with the foundations of diffusion models, explaining forward and reverse diffusion processes and exploring the key components of Stable Diffusion architectures, including U-Net, VAE, and text encoders. Learners then apply Low-Rank Adaptation (LoRA) techniques to train efficiently on consumer hardware, comparing performance and trade-offs with full fine-tuning. In the second module, learners implement DreamBooth, a methodology for training on limited datasets to personalize models with custom concepts and artistic styles. They practice dataset preparation, hyperparameter tuning, and checkpoint management while preserving model generalization. The final module introduces ComfyUI, where learners design and execute node-based workflows that integrate fine-tuned models with advanced extensions like ControlNet.

Fine-tuning Image Models with Diffusion
Cela se termine bientôt : Obtenez des compétences de niveau supérieur avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Fine-tuning Image Models with Diffusion
Ce cours fait partie de Open Generative AI: Build with Open Models and Tools Certificat Professionnel

Instructeur : Professionals from the Industry
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : AI Personalization
- Catégorie : Image Quality
- Catégorie : Generative AI
- Catégorie : Performance Tuning
- Catégorie : Model Deployment
- Catégorie : Autoencoders
- Catégorie : Transfer Learning
- Catégorie : Model Evaluation
- Catégorie : Generative Model Architectures
- Catégorie : AI Workflows
Détails à connaître

Ajouter à votre profil LinkedIn
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Machine Learning
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Coursera

Il y a 4 modules dans ce cours
Learn the fundamentals of diffusion models and why they play such a critical role in modern image generation. You’ll explore the key architectural components of Stable Diffusion, U-Net, VAE, and text encoders, and see how LoRA adapts these models efficiently for fine-tuning. You’ll also analyze memory optimization techniques and compare LoRA with full fine-tuning approaches, giving you practical principles for deciding which method to use depending on your goals and constraints.
Inclus
1 vidéo2 lectures1 devoir1 laboratoire non noté
Learn how to personalize diffusion models using the DreamBooth methodology. You’ll prepare small, targeted datasets for training custom concepts and styles, and understand how prior-preservation loss helps maintain model generalization. You’ll also apply hyperparameter strategies to balance creativity with stability and practice managing checkpoints and merging techniques. These skills give you the ability to adapt diffusion models to unique styles and use cases, making fine-tuning directly relevant to real-world creative and professional projects.
Inclus
1 vidéo1 lecture1 devoir1 laboratoire non noté
Learn how to use ComfyUI to design and manage advanced workflows for diffusion models. You’ll set up the environment, navigate the node-based interface, and load custom fine-tuned models into your pipelines. You’ll also practice building complex generation workflows with extensions like ControlNet, giving you a flexible, visual way to experiment and produce consistent, high-quality results. These skills make workflow design more efficient and directly applicable to real-world creative and production settings.
Inclus
2 lectures1 devoir
Learn how to optimize fine-tuned diffusion models so they’re reliable in real production environments. You’ll adjust inference settings like steps, CFG scale, and batch size to balance speed, quality, and resource use, and practice testing how small tweaks can dramatically improve results. You’ll also adapt workflows for deployment, gaining practical skills to deliver outputs that are both efficient and production-ready. These techniques give you the ability to make informed trade-offs that directly impact performance in real-world projects.
Inclus
1 lecture1 devoir1 laboratoire non noté
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning

Coursera

Coursera

Coursera
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.


