The Fine-Tuning Text Models with PEFT course introduces learners to parameter-efficient fine-tuning methods that enable large language model adaptation on limited hardware. Learners start with foundational concepts of PEFT and Low-Rank Adaptation (LoRA), understanding their advantages over full fine-tuning in terms of memory, cost, and flexibility.

Fine-tuning Text Models with PEFT
Cela se termine bientôt : Obtenez des compétences de niveau supérieur avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Fine-tuning Text Models with PEFT
Ce cours fait partie de Open Generative AI: Build with Open Models and Tools Certificat Professionnel

Instructeur : Professionals from the Industry
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Hugging Face
- Catégorie : Model Evaluation
- Catégorie : Performance Tuning
- Catégorie : Transfer Learning
- Catégorie : Development Environment
- Catégorie : Natural Language Processing
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Large Language Modeling
Détails à connaître

Ajouter à votre profil LinkedIn
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Machine Learning
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Coursera

Il y a 4 modules dans ce cours
Learn how to fine-tune large language models with parameter-efficient techniques that make advanced training possible on everyday hardware. You’ll explore the principles and advantages of PEFT, implement QLoRA for practical fine-tuning, and design hyperparameter strategies that balance accuracy and efficiency. You’ll also apply evaluation metrics and build complete pipelines from data preparation to model assessment, gaining hands-on experience with workflows that shape today’s practice while preparing you to adapt as methods continue to advance.
Inclus
5 vidéos2 lectures1 devoir1 laboratoire non noté
See how parameter-efficient fine-tuning (PEFT) concepts form the foundation for QLoRA. You’ll examine QLoRA’s architecture, set up the training environment with the right dependencies, and prepare datasets for efficient fine-tuning on consumer hardware. You’ll also design hyperparameter strategies and manage checkpoints and model versions, gaining hands-on experience with a workflow that plays a central role in modern fine-tuning. Along the way, you’ll strengthen principles that help you adapt as fine-tuning methods continue to advance.
Inclus
3 vidéos1 devoir2 laboratoires non notés
Focus on the role of hyperparameters in fine-tuning and how to adjust them for the best results. You’ll learn strategies for setting and refining learning rates, batch sizes, and rank values, along with techniques for identifying the “sweet spot” that balances efficiency and accuracy. You’ll also implement checkpointing and manage model versions to track progress and avoid wasted runs. These skills give you the ability to adapt hyperparameter choices to different problems and build stronger, more reliable models.
Inclus
1 vidéo1 lecture1 devoir1 laboratoire non noté
Learn how to evaluate whether your fine-tuned model is bringing value and why benchmarks are critical for proving it. You’ll apply a suite of metrics, such as perplexity, ROUGE, BLEU, and BERTScore, while also using qualitative checks to capture dimensions numbers can miss. You’ll analyze trade-offs in accuracy, inference speed, and memory use, and create dashboards that make results easy to interpret. These practices ensure you can confidently measure performance and deliver fine-tuned models that meet real-world standards.
Inclus
4 vidéos1 lecture1 devoir1 laboratoire non noté
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.





