Artificial intelligence is transforming healthcare by improving diagnosis, enhancing patient care, and streamlining clinical workflows. If you’re a technologist aiming to apply your skills to healthcare challenges, or a healthcare professional eager to understand and shape the AI tools you’ll work with, this course is for you.

Fini aujourd'hui : Profitez des économies du Cyber Monday avec 160 $ de réduction sur plus de 10 000 programmes.


Foundations of AI in Healthcare
Ce cours fait partie de Spécialisation Artificial Intelligence for Healthcare


Instructeurs : Ramesh Sannareddy
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Describe how AI and machine learning are transforming healthcare delivery, clinical workflows, and patient outcomes.
Explain ethical frameworks, regulations, and governance standards relevant to AI in healthcare.
Summarize common challenges and solutions related to bias, privacy, and integration in AI healthcare implementation.
Design and implement machine learning workflows tailored to healthcare datasets and requirements.
Compétences que vous acquerrez
- Catégorie : Data Analysis
- Catégorie : Clinical Research
- Catégorie : Clinical Informatics
- Catégorie : Artificial Intelligence
- Catégorie : Healthcare Industry Knowledge
- Catégorie : Health Informatics
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
Détails à connaître

Ajouter à votre profil LinkedIn
novembre 2025
13 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
In this module, you will learn about the basics of artificial intelligence in healthcare. The module begins with tracing the historical evolution of AI, followed by machine learning concepts and how these technologies are transforming clinical workflows across diagnosis, treatment, and patient care. Through real-world examples, you will learn how AI is being integrated into healthcare. You will gain insights into the opportunities and limitations presented by this integration. The module concludes with a forward-looking discussion on the challenges, innovations, and future trends in AI-driven healthcare, preparing you to think critically about the role of AI in modern medical practice.
Inclus
7 vidéos1 lecture4 devoirs6 plugins
This module addresses the ethical, legal, and regulatory dimensions of AI implementation in healthcare settings. Students will examine fundamental ethical principles, including autonomy, beneficence, and justice, as they apply to AI-assisted medical decision-making and patient care. The module provides comprehensive coverage of bias detection and mitigation strategies, helping students understand how algorithmic fairness impacts health equity and patient outcomes across diverse populations. Students will explore privacy-preserving AI technologies and cybersecurity frameworks essential for protecting sensitive health information in AI systems. The module also covers the global regulatory landscape, including FDA guidance and international standards, while providing practical frameworks for establishing AI governance and risk management processes within healthcare organizations.
Inclus
6 vidéos1 lecture4 devoirs1 laboratoire non noté5 plugins
This hands-on module provides students with practical skills for developing and implementing machine learning solutions in healthcare environments. Students will master the complete ML workflow from problem definition to model development, with special emphasis on healthcare-specific considerations such as regulatory compliance and clinical validation requirements. The module covers both supervised and unsupervised learning techniques through real-world medical applications, including diagnostic prediction, patient segmentation, and clinical outcome forecasting. Students will learn advanced feature engineering techniques for medical data. The module concludes with practical guidance on integrating ML models into clinical decision support systems, addressing implementation barriers, and measuring clinical impact in real healthcare settings.
Inclus
6 vidéos1 lecture4 devoirs1 laboratoire non noté5 plugins
This final module consolidates the knowledge gained throughout the course and guides learners through a comprehensive, hands-on application of AI in a healthcare scenario. Learners will revisit key concepts, engage in a case-based project or lab, and demonstrate their understanding through practical problem-solving. The module also includes a final assessment and offers reflection activities to help learners identify future learning pathways and career opportunities in healthcare AI. Emphasis is placed on real-world relevance, ethical practice, and readiness for continued specialization. This capstone experience reinforces both conceptual mastery and practical competence.
Inclus
1 vidéo2 lectures1 devoir1 évaluation par les pairs1 sujet de discussion2 plugins
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuit
Statut : Essai gratuitUniversity of Colorado System
Statut : PrévisualisationNortheastern University
Statut : PrévisualisationAI CERTs
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes! You'll work with two guided labs: one on detecting bias in healthcare data using realistic datasets, and another on predicting diabetes with the real Pima Indians Diabetes Dataset. The code is provided for you to review and run, so you can see how AI models are applied in real healthcare contexts.
No extensive coding knowledge required. The labs use pre-written Python code in Jupyter Notebook that you'll review and run to understand how healthcare AI models are built, trained, and tested. The focus is on understanding the process, not writing code from scratch.
The course emphasizes responsible AI throughout. You'll explore real examples of bias detection, fairness, and privacy considerations, and learn how ethical principles guide AI model development and deployment in clinical settings.
Plus de questions
Aide financière disponible,

