Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
University of Colorado Boulder

Introduction to Deep Learning

Daniel E. Acuna

Instructeur : Daniel E. Acuna

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

2 semaines à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

2 semaines à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Explain the mathematical foundations of neural networks and how they learn from data.

  • Train and regularize deep neural networks for effective generalization.

  • Design and apply specialized neural network architectures for images and sequences.

  • Apply transformer-based and multimodal models to real-world scenarios.

Compétences que vous acquerrez

  • Catégorie : Keras (Neural Network Library)
  • Catégorie : Natural Language Processing
  • Catégorie : Large Language Modeling
  • Catégorie : Network Architecture
  • Catégorie : Vision Transformer (ViT)
  • Catégorie : Network Model
  • Catégorie : Recurrent Neural Networks (RNNs)
  • Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
  • Catégorie : Embeddings
  • Catégorie : PyTorch (Machine Learning Library)

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

janvier 2026

Évaluations

6 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Machine Learning: Theory and Hands-on Practice with Python
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable

Il y a 5 modules dans ce cours

Welcome to Introduction to Deep Learning. This module builds the mathematical foundations of neural networks. Starting from linear models, you will learn about the artificial neuron and develop the mathematics of gradient descent and backpropagation. The focus is on understanding how and why neural networks work through the underlying math—covering the forward pass, loss functions, and the chain rule to show how information flows through networks and how they learn from data.

Inclus

15 vidéos5 lectures2 devoirs1 devoir de programmation

This module focuses on training neural networks effectively. Topics include optimization algorithms, hyperparameter tuning, and regularization techniques to prevent overfitting and achieve good generalization. You will compare different optimizers like SGD, momentum, and Adam, understand how learning rate and batch size affect training dynamics, and apply weight decay, dropout, early stopping, and batch normalization.

Inclus

7 vidéos2 lectures1 devoir1 devoir de programmation

This module introduces you to convolutional neural networks (CNNs), the foundation of modern computer vision. Topics include how convolutional and pooling layers work, CNN architecture design, and practical techniques like data augmentation and transfer learning. The module covers classic architectures like VGG and ResNet and explains why CNNs outperform fully-connected networks on image data.

Inclus

7 vidéos2 lectures1 devoir1 devoir de programmation

This module covers sequence modeling, starting with recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), then progressing to the attention mechanism—the key innovation that led to transformers. Topics include how RNNs maintain hidden states across time steps, why the vanishing gradient problem motivated LSTMs, and how attention allows models to focus on relevant parts of their input.

Inclus

7 vidéos1 lecture1 devoir1 devoir de programmation

This final module covers the transformer architecture, which has revolutionized deep learning across domains. Topics include BERT and GPT as encoder-only and decoder-only variants, Vision Transformers (ViT) that apply attention to images, and CLIP for multimodal learning connecting vision and language. The module emphasizes applying pre-trained models to real tasks.

Inclus

8 vidéos1 lecture1 devoir1 devoir de programmation

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeur

Daniel E. Acuna
University of Colorado Boulder
3 Cours396 apprenants

Offert par

En savoir plus sur Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions