Coursera
Learn to Choose the Right ML Model

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Coursera

Learn to Choose the Right ML Model

Hurix Digital

Instructeur : Hurix Digital

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

2 heures à compléter
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

2 heures à compléter
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Applied Machine Learning
  • Catégorie : Scikit Learn (Machine Learning Library)
  • Catégorie : Case Studies
  • Catégorie : MLOps (Machine Learning Operations)
  • Catégorie : Machine Learning
  • Catégorie : Continuous Monitoring
  • Catégorie : Classification And Regression Tree (CART)
  • Catégorie : Regression Analysis
  • Catégorie : Performance Metric
  • Catégorie : Machine Learning Algorithms
  • Catégorie : Scenario Testing
  • Catégorie : Model Evaluation
  • Catégorie : Predictive Modeling
  • Catégorie : Responsible AI

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

décembre 2025

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Il y a 3 modules dans ce cours

In this opening lesson, learners see how correctly typing a machine-learning problem and inspecting data traits set the stage for every modeling decision. Guided by the Zillow Offers collapse (Problem: mis-priced homes from data drift; Why It Matters: $420 M loss), you'll practise spotting regression vs classification tasks, gauging feature quality, and flagging distribution shifts before they derail a project. Videos, a data-profiling lab, and a peer discussion build the analytical eye needed to choose the right model family with confidence.

Inclus

3 vidéos3 lectures1 devoir

In this lesson, learners will analyze the strengths and limitations of the most widely used machine learning model families—linear models, tree-based ensembles, clustering, and deep learning—to understand when and why each is best applied. The lesson focuses on why simply “trying every algorithm” leads to wasted effort, and how matching problem type and data structure to the right family enables smarter, faster, and more defensible results.Real-world failures, such as the Amazon recruiting engine bias, illustrate the pitfalls of poorly chosen models. Through scenario-based videos, guided readings, peer discussions, and hands-on labs, learners will practice comparing algorithms for fairness, performance, and interpretability—shifting from a toolbox mindset to strategic model selection.

Inclus

2 vidéos2 lectures1 devoir

In this lesson, learners discover how wiring continuous evaluation into every training and deployment step transforms model delivery from a sprint of experiments into a reliable, data-driven decision engine. A midnight release scenario—where an unmonitored metric drifted and customer limits halved unexpectedly—shows why automated checks must begin with the very first cross-validation split and extend into live A/B tests.Learners investigate practical tooling—MLflow for experiment tracking, Optuna for automated hyper-parameter tuning, Evidently for production drift alerts, and GitHub Actions workflows for reproducible evaluation—to ensure issues surface before a model reaches end users. Case studies of metric blindness and data drift (e.g., Apple Card’s gender-bias probe and Google Flu Trends’ over-forecasting) demonstrate how small oversights in monitoring or retraining cadence can spiral into reputational or financial damage, reinforcing the need for continuous oversight.Hands-on demonstrations guide participants through:• setting quantitative success criteria that mix accuracy, fairness, and cost• configuring gates that fail a training run when key metrics regress• running a live A/B test and interpreting uplift with statistical rigor—all without slowing delivery velocity.By the end of the lesson, learners will know both how to embed metric-driven workflows into real pipelines and why treating evaluation as an afterthought is no longer acceptable—validation must be continuous, integrated, and owned by every stakeholder in the ML lifecycle.

Inclus

4 vidéos1 lecture3 devoirs

Instructeur

Hurix Digital
Coursera
79 Cours2 005 apprenants

Offert par

Coursera

En savoir plus sur Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions

¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.