This advanced course teaches machine learning and AI techniques for big data systems. Learners will build end-to-end ML pipelines with PySpark ML, implement supervised and unsupervised models, and apply NLP techniques at scale. The course also explores deep learning, distributed training, and integrating Generative AI into big data workflows.

Data Analytics and Machine Learning for Big Data

Data Analytics and Machine Learning for Big Data
Ce cours fait partie de Microsoft Big Data Management and Analytics Certificat Professionnel

Instructeur : Microsoft
Inclus avec
Détails à connaître

Ajouter à votre profil LinkedIn
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Data Analysis
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Microsoft

Il y a 5 modules dans ce cours
Machine learning appears quite different when data exceeds the capacity of a single system. In this section, learners explore the foundational ideas behind machine learning in big data environments and how familiar approaches change at scale. You will examine supervised and unsupervised learning, regression and classification problems, and the practical challenges that arise with massive datasets—such as scalability, distributed computing, and the need to adapt algorithms for large-scale processing.
Inclus
6 vidéos3 lectures7 devoirs
A practical foundation for building scalable machine learning solutions using PySpark ML in big data environments. The content focuses on designing and implementing end-to-end machine learning pipelines with transformers and estimators, while developing regression, classification, and clustering models that scale across distributed systems. Emphasis is placed on real-world implementation and informed platform selection for enterprise deployments using Azure Databricks, Microsoft Fabric, and Azure HDInsight, ensuring solutions are both technically robust and operationally viable at scale.
Inclus
6 vidéos3 lectures10 devoirs
Large-scale text analytics introduces the challenges and techniques required to process and analyze unstructured text at enterprise scale using distributed computing frameworks. The focus is on applying natural language processing (NLP) techniques in scalable architectures to support text classification, sentiment analysis, and entity and relationship extraction across massive text corpora. Emphasis is placed on practical, production-oriented approaches for handling high-volume text data, with integration of Azure Cognitive Services to enhance accuracy, scalability, and operational efficiency in real-world analytics solutions.
Inclus
6 vidéos3 lectures10 devoirs
Deep Learning for Big Data introduces the fundamentals of deep learning and advanced architectures specifically adapted for big data environments. Students will learn to implement neural networks for big data applications, apply transfer learning techniques with pre-trained models, and scale deep learning training across distributed clusters using modern frameworks and optimization techniques.
Inclus
6 vidéos3 lectures10 devoirs
Generative AI and Big Data Integration explores how generative AI transforms big data analytics by enabling intelligent, natural language–driven workflows at scale. You will learn how foundation models and large language models integrate with distributed data pipelines to automate insights, enhance analytics, and power modern data applications. Through hands-on labs, you will implement LLM integration, apply fine-tuning for domain-specific use cases, and design production-ready GenAI solutions for real-world big data scenarios.
Inclus
7 vidéos3 lectures9 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Data Analysis
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.

Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.





