Memory inefficiencies cause 40% of Java ML application performance problems, making optimization critical for production systems. This course equips Java developers to build memory-efficient ML systems through hands-on profiling with Java Flight Recorder and systematic optimization of collections and JVM settings. You'll diagnose bottlenecks using heap analysis, optimize pipelines by replacing inefficient structures like LinkedList with ArrayDeque, and tune garbage collectors for low-latency inference. This course eliminates memory bottlenecks, degrading ML production systems. With hands-on labs, you will simulate production scenarios, including GC pause analysis and container optimization.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Ce que vous apprendrez
Analyze profiler output to diagnose memory bottlenecks using Java Flight Recorder by interpreting heap graphs, GC pauses, and object churn.
Optimize data structures to reduce GC overhead 15-30% by replacing inefficient collections, implementing object pooling, and using primitives.
Tune JVM parameters and GC settings for production ML workloads by configuring heap sizes and selecting appropriate GC algorithms.
Compétences que vous acquerrez
- Catégorie : Model Deployment
- Catégorie : Java
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Application Performance Management
- Catégorie : Data Structures
- Catégorie : Analysis
- Catégorie : Performance Tuning
- Catégorie : Docker (Software)
- Catégorie : Containerization
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
This module establishes the foundation for understanding how Java manages memory in ML applications and why memory optimization is critical for performance. Learners will explore JVM architecture (heap, stack, metaspace), identify memory-intensive patterns common in ML pipelines (feature transformations, tensor manipulation, data preprocessing), and understand how garbage collection cycles impact model inference latency. Through profiling tool setup and hands-on exercises with real ML workloads, students will learn to capture and interpret basic memory metrics, recognize common bottlenecks like excessive object creation and large collection overhead, and prepare their development environment for systematic memory analysis.
Inclus
4 vidéos2 lectures1 évaluation par les pairs
This module establishes the foundation for understanding how Java manages memory in ML applications and why memory optimization is critical for performance. Learners will explore JVM architecture (heap, stack, metaspace), identify memory-intensive patterns common in ML pipelines (feature transformations, tensor manipulation, data preprocessing), and understand how garbage collection cycles impact model inference latency. Through profiling tool setup and hands-on exercises with real ML workloads, students will learn to capture and interpret basic memory metrics, recognize common bottlenecks like excessive object creation and large collection overhead, and prepare their development environment for systematic memory analysis.
Inclus
3 vidéos1 lecture1 évaluation par les pairs
This module applies comprehensive optimization techniques to build production-ready, memory-efficient ML systems. Learners will implement strategies to reduce object overhead in data pipelines through buffer pooling and primitive collections (Trove, FastUtil), tune JVM parameters for ML inference workloads including heap sizing and GC algorithm selection (G1GC, ZGC, Shenandoah), and optimize for containerized environments (Docker, Kubernetes). The capstone project guides students through an end-to-end optimization of a real ML service—from baseline profiling through data structure fixes and GC tuning to final validation—achieving measurable improvements in throughput (20-40%), latency reduction, and memory footprint while demonstrating production monitoring best practices.
Inclus
4 vidéos1 lecture1 devoir2 évaluations par les pairs
Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuitBoard Infinity
Statut : Essai gratuitBoard Infinity
Statut : Essai gratuitBoard Infinity
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,



