Large Language Models (LLMs) are transforming the way organizations interact with data, automate tasks, and deliver personalized experiences. This course unpacks the architecture, training methods, and strategic implementation of LLMs—core skills for anyone looking to thrive in the evolving AI landscape.

il reste 5 jours : Bénéficiez d'un coup de pouce pour le Black Friday avec 160 $ de réduction sur plus de 10 000 programmes.


Expérience recommandée
Ce que vous apprendrez
Explore the architecture and components of modern large language models
Implement and manage LLMs effectively in organizational settings
Master techniques for training, fine-tuning, and deploying LLMs
Compétences que vous acquerrez
- Catégorie : Prompt Engineering
- Catégorie : Machine Learning
- Catégorie : Natural Language Processing
- Catégorie : Systems Integration
- Catégorie : Responsible AI
- Catégorie : Scalability
- Catégorie : Generative AI
- Catégorie : Operational Efficiency
- Catégorie : Deep Learning
- Catégorie : Generative Model Architectures
- Catégorie : Performance Tuning
- Catégorie : Large Language Modeling
- Catégorie : Application Deployment
Détails à connaître

Ajouter à votre profil LinkedIn
novembre 2025
15 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 15 modules dans ce cours
In this section, we explore LLM architecture, focusing on Transformer models, attention mechanisms, and their advantages over RNNs, enhancing understanding of modern language systems.
Inclus
2 vidéos9 lectures1 devoir
In this section, we examine how LLMs use probability and statistical analysis for decision-making, focusing on mechanisms, challenges, and practical implications for model reliability and accuracy.
Inclus
1 vidéo6 lectures1 devoir
In this section, we explore data preparation, training environment setup, and hyperparameter tuning for LLMs, emphasizing balanced datasets and strategies to address overfitting and underfitting.
Inclus
1 vidéo6 lectures1 devoir
In this section, we explore transfer learning, curriculum learning, and multitasking to enhance LLM performance, focusing on practical applications and real-world adaptability.
Inclus
1 vidéo8 lectures1 devoir
In this section, we explore techniques like LoRA and PEFT to enhance LLM adaptability for NLP tasks, focusing on efficient fine-tuning and precision in model customization for real-world applications.
Inclus
1 vidéo8 lectures1 devoir
In this section, we explore methods for evaluating LLMs using quantitative metrics, human-in-the-loop protocols, and ethical bias analysis to ensure reliable and responsible model performance.
Inclus
1 vidéo7 lectures1 devoir
In this section, we explore deploying LLMs in production, focusing on scalability, security, and maintenance to ensure reliable and efficient real-world performance.
Inclus
1 vidéo7 lectures1 devoir
In this section, we examine strategies for integrating LLMs into existing systems, focusing on compatibility, security, and practical implementation techniques.
Inclus
1 vidéo8 lectures1 devoir
In this section, we explore quantization, pruning, and knowledge distillation to optimize LLMs for efficiency and performance in real-world applications.
Inclus
1 vidéo7 lectures1 devoir
In this section, we cover hardware acceleration, data optimization, and cost-performance balance for LLM deployment.
Inclus
1 vidéo5 lectures1 devoir
In this section, we examine LLM vulnerabilities, bias mitigation strategies, and legal compliance challenges, emphasizing responsible AI deployment and ethical decision-making.
Inclus
1 vidéo7 lectures1 devoir
In this section, we explore the use of LLMs in customer service, marketing, and operations, highlighting their role in improving efficiency, optimizing strategies, and delivering measurable ROI through automation and data analysis.
Inclus
1 vidéo5 lectures1 devoir
In this section, we examine the selection and integration of LLM tools, comparing open source and proprietary options, and highlight the role of cloud services in NLP workflows.
Inclus
1 vidéo6 lectures1 devoir
In this section, we cover GPT-5 readiness, contextual understanding, and strategic planning for future LLM advancements.
Inclus
1 vidéo6 lectures1 devoir
In this section, we review key insights and explore the future of LLMs and AI learning opportunities.
Inclus
1 vidéo3 lectures1 devoir
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,

