This course takes a step-by-step approach to the process of building robust models to predict real-world outcomes and uncover valuable insights from your data. You’ll start with a solid foundation in probability and statistical distributions, learning how to estimate parameters and fit models using industry-standard libraries such as SciPy and NumPy. You'll dive into the theory and practice of regression analysis, learning about modeling correlations and interpreting coefficients for actionable business intelligence. Beyond model building, you’ll gain critical skills in evaluating model performance, troubleshooting common pitfalls, and understanding the nuanced differences between statistics, modeling, and machine learning. By the end of the course, you’ll confidently leverage Scikit-learn to implement predictive algorithms, distinguish between inference and prediction, and apply your knowledge to solve complex, real-world problems.

Découvrez de nouvelles compétences avec 120 $ de réduction sur les cours dispensés par des experts de l'industrie. Économisez maintenant.


Data Science Fundamentals Part 2: Unit 3
Ce cours fait partie de Spécialisation Data Science Fundamentals, Part 2

Instructeur : Pearson
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Build and evaluate statistical models to predict outcomes using Python libraries such as SciPy, NumPy, and Scikit-learn.
Understand and apply the fundamentals of probability, statistical distributions, and regression analysis.
Identify and overcome common challenges in model fitting and performance evaluation.
Distinguish between statistical inference and prediction, and leverage machine learning algorithms for real-world applications.
Compétences que vous acquerrez
- Catégorie : Supervised Learning
- Catégorie : Statistical Modeling
- Catégorie : Business Analytics
- Catégorie : Regression Analysis
- Catégorie : Performance Metric
- Catégorie : Data Analysis
- Catégorie : Probability & Statistics
- Catégorie : Estimation
- Catégorie : Machine Learning
- Catégorie : Scikit Learn (Machine Learning Library)
- Catégorie : Statistical Inference
- Catégorie : Probability Distribution
- Catégorie : Predictive Modeling
- Catégorie : Predictive Analytics
- Catégorie : Statistical Analysis
Détails à connaître

Ajouter à votre profil LinkedIn
août 2025
2 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a un module dans ce cours
This module introduces the fundamentals of statistical modeling and machine learning using Python. You’ll learn to analyze Airbnb listing data, starting with probability and statistical distributions, then progress to parameter estimation and regression analysis. The module covers building and evaluating predictive models, understanding model performance, and overcoming common challenges. You’ll also explore the distinctions between statistics, modeling, and machine learning, and gain hands-on experience with Scikit-learn to make predictions. By the end, you’ll know how to create, interpret, and assess statistical models for real-world data analysis and prediction tasks.
Inclus
24 vidéos2 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Data Analysis
- Statut : Essai gratuit
University of California, Irvine
- Statut : Prévisualisation
The University of Chicago
- Statut : Essai gratuit
Edureka
- Statut : Essai gratuit
Alberta Machine Intelligence Institute
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,