In this course, we will investigate the ethical challenges in Artificial Intelligence (AI) systems. The focus of this course is on preparing students with the knowledge and practical approaches necessary in designing reliable and ethical AI systems that are responsible and trustworthy.

Cela se termine bientôt : Obtenez des compétences de niveau supérieur avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Model Evaluation
- Catégorie : Data Ethics
- Catégorie : Artificial Intelligence
- Catégorie : Law, Regulation, and Compliance
- Catégorie : Information Privacy
- Catégorie : Personally Identifiable Information
- Catégorie : General Data Protection Regulation (GDPR)
- Catégorie : Data Governance
- Catégorie : Risk Management Framework
- Catégorie : Dependency Analysis
- Catégorie : Responsible AI
- Catégorie : Ethical Standards And Conduct
- Catégorie : Data-Driven Decision-Making
Détails à connaître

Ajouter à votre profil LinkedIn
octobre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 4 modules dans ce cours
In this module, we will discuss the language of data and how to use data to make a business decision. We will discuss how an AI-driven culture helps organizations make better and more effective decisions.
Inclus
2 vidéos9 lectures1 devoir1 élément d'application1 sujet de discussion
In this module, we will discuss various types of bias that can influence AI model decisions and explore strategies to mitigate these challenges. We will also examine other AI risks that impact the development of ethical AI systems. The module also covers how bias can impact the outcome of the results and misrepresent the data, violate company policies, and damage an organization’s reputation.
Inclus
7 vidéos6 lectures2 devoirs1 sujet de discussion
We will discuss a comprehensive framework for developing reliable, responsible, and ethical AI systems. We will center on transparency and explainability, understanding how to make AI decisions interpretable and trustworthy to users and stakeholders. The discussion will cover key areas such as data governance, regulatory compliance, privacy concerns, and transparency. By addressing these critical factors, we aim to explore how organizations can design and implement AI systems that are not only effective but also trustworthy, fair, and aligned with ethical standards.
Inclus
1 vidéo7 lectures1 devoir1 élément d'application1 sujet de discussion
In this module, we will explore various AI standards and frameworks, including the NIST AI Risk Management Framework, as well as key regulatory frameworks such as the EU AI Act, GDPR, and other emerging international AI regulations. We will examine the growing importance of these standards in guiding responsible AI development across different industries and jurisdictions, and discuss how global variations in regulatory approaches impact the design, deployment, and governance of AI systems.
Inclus
2 vidéos10 lectures2 devoirs1 élément d'application
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : PrévisualisationJohns Hopkins University
Statut : Essai gratuit
Statut : PrévisualisationAI CERTs
Statut : Essai gratuitFractal Analytics
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.




