In this 2-hour long project-based course, you will learn how to implement Linear Regression using Python and Numpy. Linear Regression is an important, fundamental concept if you want break into Machine Learning and Deep Learning. Even though popular machine learning frameworks have implementations of linear regression available, it's still a great idea to learn to implement it on your own to understand the mechanics of optimization algorithm, and the training process.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

(438 avis)
Expérience recommandée
Ce que vous apprendrez
Create a linear model, and implement gradient descent.
Train the linear model to fit given data using gradient descent.
Compétences que vous pratiquerez
- Catégorie : Regression Analysis
- Catégorie : Python Programming
- Catégorie : Machine Learning
- Catégorie : Predictive Modeling
- Catégorie : NumPy
- Catégorie : Data Science
- Catégorie : Machine Learning Algorithms
- Catégorie : Deep Learning
- Catégorie : Supervised Learning
Détails à connaître

Ajouter à votre profil LinkedIn
Disponible uniquement sur ordinateur
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Apprendre, pratiquer et appliquer des compétences prêtes à l’emploi en moins de 2 heures
- Bénéficiez d’une formation par des experts du secteur
- Gagnez en expérience pratique en effectuant des tâches professionnelles du monde réel
- Renforcez votre confiance en utilisant les outils et technologies les plus récents

À propos de ce Projet Guidé
Apprendrez étape par étape
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Introduction
Dataset
Initialize Parameters
Forward Pass
Compute Loss
Backward Pass
Update Parameters
Training Loop
Predictions
Additional Example
Expérience recommandée
Some programming experience in Python is required. Understanding of the theory behind logistic regression, gradient descent is required.
7 images de projet
Instructeur

Offert par
Méthode d’apprentissage
Apprentissage pratique basé sur les compétences
Mettez en pratique de nouvelles compétences en effectuant des tâches professionnelles.
Conseils d’experts
Suivez les vidéos pré-enregistrées d’experts à l’aide d’une interface unique, divisée en deux.
Aucun téléchargement ou installation requis(e)
Accédez aux outils et aux ressources dont vous avez besoin dans un espace de travail cloud préconfiguré.
Disponible uniquement sur ordinateur de bureau
Ce Projet Guidé est conçu pour les ordinateurs portables ou de bureau disposant d’une connexion internet fiable, et non pour les appareils mobiles.
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Avis des étudiants
438 avis
- 5 stars
66,21 %
- 4 stars
26,71 %
- 3 stars
5,47 %
- 2 stars
0,91 %
- 1 star
0,68 %
Affichage de 3 sur 438
Révisé le 27 mai 2020
This topic is useful for Algebraic Linear Regression Equation.
Révisé le 2 avr. 2020
Explain more about what the code do, as I've to google it and try to figure out which wasted a lot of time, thank you
Révisé le 19 avr. 2020
Good for beginners, interface could have been better
Vous aimerez peut-être aussi
Statut : Essai gratuit
Statut : PrévisualisationSimplilearn
Statut : Essai gratuitUniversity of Pittsburgh
Statut : Essai gratuitCorporate Finance Institute
Foire Aux Questions
En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.




