Chevron Left
Back to Communicating Data Science Results

Learner Reviews & Feedback for Communicating Data Science Results by University of Washington

3.6
stars
135 ratings

About the Course

Important note: The second assignment in this course covers the topic of Graph Analysis in the Cloud, in which you will use Elastic MapReduce and the Pig language to perform graph analysis over a moderately large dataset, about 600GB. In order to complete this assignment, you will need to make use of Amazon Web Services (AWS). Amazon has generously offered to provide up to $50 in free AWS credit to each learner in this course to allow you to complete the assignment. Further details regarding the process of receiving this credit are available in the welcome message for the course, as well as in the assignment itself. Please note that Amazon, University of Washington, and Coursera cannot reimburse you for any charges if you exhaust your credit. While we believe that this assignment contributes an excellent learning experience in this course, we understand that some learners may be unable or unwilling to use AWS. We are unable to issue Course Certificates for learners who do not complete the assignment that requires use of AWS. As such, you should not pay for a Course Certificate in Communicating Data Results if you are unable or unwilling to use AWS, as you will not be able to successfully complete the course without doing so. Making predictions is not enough! Effective data scientists know how to explain and interpret their results, and communicate findings accurately to stakeholders to inform business decisions. Visualization is the field of research in computer science that studies effective communication of quantitative results by linking perception, cognition, and algorithms to exploit the enormous bandwidth of the human visual cortex. In this course you will learn to recognize, design, and use effective visualizations. Just because you can make a prediction and convince others to act on it doesn’t mean you should. In this course you will explore the ethical considerations around big data and how these considerations are beginning to influence policy and practice. You will learn the foundational limitations of using technology to protect privacy and the codes of conduct emerging to guide the behavior of data scientists. You will also learn the importance of reproducibility in data science and how the commercial cloud can help support reproducible research even for experiments involving massive datasets, complex computational infrastructures, or both. Learning Goals: After completing this course, you will be able to: 1. Design and critique visualizations 2. Explain the state-of-the-art in privacy, ethics, governance around big data and data science 3. Use cloud computing to analyze large datasets in a reproducible way....

Top reviews

Filter by:

1 - 25 of 35 Reviews for Communicating Data Science Results

By Vijay P

Jun 8, 2019

By Chen Y

Oct 2, 2016

By Mary A

Nov 3, 2018

By Reese

Jun 22, 2017

By Piyush K

Jan 7, 2018

By Red R

Jan 11, 2022

By Weng L

Jun 6, 2016

By Bingcheng L

Aug 7, 2019

By Shivanand R K

Jun 18, 2016

By Menghe L

Jun 27, 2017

By Daniel A

Dec 18, 2015

By Julia L

Feb 9, 2016

By Gregory R

Nov 10, 2016

By Seth

Jan 14, 2016

By Fermin Q

Nov 12, 2016

By Albert P

Jun 18, 2017

By Tebogo M

Feb 2, 2017

By Fernando S

Nov 18, 2016

By Ivajlo D

Nov 13, 2018

By Roberto S

Jun 13, 2017

By Joris D

Jul 8, 2017

By Solvita B

Apr 20, 2016

By Alexandre C

Apr 1, 2016

By Jana E

Dec 7, 2017

By Anton S

Dec 19, 2015