Y
Sep 23, 2017
Very good course! It provide me the foundation in learning how to plot and interpret data. This will definitely strengthen my "R programming" to generate publication type figure for my genomics data!
CC
Jul 28, 2016
This is the second course I have taken from Roger Peng and both were outstanding. I have a strong math background, but not much of a background in stats, but this course was very approachable for me.
By Marco A P N
•Jun 1, 2016
Great
By Yusuf S
•May 19, 2016
great
By Sameeksha
•May 12, 2021
good
By Souvik P
•Aug 5, 2020
good
By Pitak P
•Oct 4, 2019
Good
By Razib A K
•Dec 18, 2018
good
By Ganapathi N K
•Apr 30, 2018
Nice
By Jay B
•Aug 15, 2017
good
By Saurabh G
•Apr 13, 2017
nice
By Larry G
•Feb 7, 2017
Nice
By 刘治
•Jul 17, 2016
good
By Prakash M S G C
•May 24, 2016
Good
By 朱荣荣
•Mar 9, 2016
good
By 丁雪松
•Jun 15, 2020
💯
By Amit K R
•Nov 21, 2017
ok
By Meidani P
•Dec 3, 2021
-
By Ganesh P
•Nov 28, 2017
V
By Wei W
•Sep 11, 2017
C
By Balinda S
•Dec 11, 2016
T
By Phillip K
•Mar 20, 2018
Good stuff just as I have come to expect from this University and the courses that are part of this Signature Track.
A great deal of the lectures and work on assignments/quizzes/projects was learning and using the various plotting systems in R. Certainly this is important, but to put it into perspective, I spent four hours creating six plots for the final project, when I was able to use Tableau Desktop to create all six plots in under five minutes.
So formally learning the data exploration techniques was good, but expect much of this course to be about learning the R plotting systems.
That said, there is a point in this course (and the first time for all the courses to this point) where the topic suddenly got very, very technical. When clustering techniques were introduced it felt as if you were turned on your head as the focus suddenly went from various ways of plotting data in R to being neck deep in the explanation of clustering techniques that require a great degree of Linear Algebra knowledge.
Don't panic though. While there are questions in the guided assignments that are difficult, you don't really need to recall all of your Linear Algebra courses from college to pass this course. After all, R "has a package for that."
By Ruggero B
•Feb 29, 2016
My congratulations to all those people who worked to create this course although I have to pick up something I've found a bit annoying:
1- there were two video where the audio were nearly unintelligible
2- I would link the link proposed by the video to be possible to be clicked
3- Some exposition imperfection (even if they make these video more "real and human")
4- Since quiz are not so difficult to be evaluated automatically I found it a bit annoying to notice them locked by not-purchsing, even if I understand there have to be something which would make the customer to purchase.
I've found the swirl experience great although a bit annoying sometimes but I've no clue on how to possibly improve it so.
Keep up with this great work!
Bye
By Jamison C
•Jul 4, 2018
You'll learn some cool things like K-means clustering and creating dendrograms, as well as dimension-reduction techniques. The assignments are very easy if you have basic familiarity with R's base plotting system and the "ggplot2" package. I will say I'm very happy with this course in the overviews of R's major plotting systems (though no "ggvis" package), as well as working with color palettes. However, I wish there was more hands-on or peer-graded practice with K-means, heatmaps, dendrograms, and dimension reduction techniques like Singular Value Decomposition (SVD). If these are new to you (they were to me!), you'll certainly walk away from the course more knowledgeable.
By Miguel C
•Apr 15, 2020
Once again the teacher was really knowledgeable and engaging. The content was really helpful for my career. The part about clustering was challenging but still manageable. The pacing was good, not too slow (so not boring) but also not too fast (so still easy to understand). The case studies, especially the one about activity measured by smartphones, was one of the best parts of the course.
I didn't particularly enjoy some of the swirl practices. I found some of them to be very very similar (if not the same) as the examples in the lectures, so I only enjoyed the few where there was some new content.
Overall I really enjoyed the course and I would recommend it :)
By Julien N
•Jul 13, 2018
A good start for data analysis, this course covers the basics of plotting with the three most common packages (base R, lattice, and ggplot2).I liked the assignment which difficulty is nicely measured (it is not just applying the videos concept, you have to look around the web to find tools and documentation about what functions to use).On a less positive aspects:- I am not sure this course was the best place to introduce kmean and PCA sections...- a lot of content is outdated (wrong links, old R command parameters, ...), look likes a quick freshup update would not do harm given the number of people that keeps registering...
By Ricardo M
•Nov 20, 2017
It would be of the best interest to all that the content of the course be reviewed. Seeing references to data from 2012-2015 gives the idea that there's been no recent content review. Although not being the same as taking the full course at the university, this is still a paid training and a certain level of accuracy is expected.
Another note goes to the forums which should be cleansed or handled differently. It's not very helpful to check a forum to see that most of the threads are requiring reviews to the assignments, some from years back.