En este curso, se explica cómo diseñar y crear una canalización de datos de entrada de TensorFlow, cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la precisión de los modelos de AA, cómo escribir modelos de AA para uso escalado y cómo escribir modelos de AA especializados.
TensorFlow on Google Cloud - Español
What you'll learn
Crear modelos de aprendizaje automático de TensorFlow y Keras, y describir sus componentes clave
Usar la biblioteca de tf.data para manipular datos y grandes conjuntos de datos
Usar las APIs secuencial y funcional de Keras para crear modelos simples y avanzados
Entrenar, implementar y llevar a producción modelos de AA a gran escala con Vertex AI
Details to know
Add to your LinkedIn profile
4 quizzes
See how employees at top companies are mastering in-demand skills
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 6 modules in this course
En este módulo, se brinda una descripción general del curso y sus objetivos.
What's included
1 video
En este módulo, se presenta el marco de trabajo de TensorFlow y se ofrece una vista previa de sus componentes principales, así como de la jerarquía general de las API.
What's included
4 videos1 reading1 quiz
Los datos son un componente esencial de los modelos de aprendizaje automático. Recopilar los datos correctos no es suficiente. También es necesario asegurarse de implementar los procesos adecuados para limpiar, analizar y transformar los datos según sea necesario, de modo que el modelo pueda captar tantos indicadores como sea posible a partir de esos datos. En este módulo, analizamos el entrenamiento con grandes conjuntos de datos mediante tf.data, el trabajo con archivos en la memoria y cómo preparar los datos para el entrenamiento. Después, analizamos las incorporaciones y terminamos con una descripción general del escalamiento de datos con capas de procesamiento previo de tf.keras.
What's included
10 videos1 reading1 quiz2 app items
En este módulo, analizamos las funciones de activación y cómo se las necesita para permitir que las redes neuronales profundas registren los aspectos no lineales de los datos. Después, se ofrece una descripción general de las redes neuronales profundas con las APIs secuencial y funcional de Keras. A continuación, describimos la subclasificación de modelos, que ofrece mayor flexibilidad para la creación de modelos. El módulo finaliza con una lección sobre regularización.
What's included
10 videos1 reading1 quiz2 app items
En este módulo, describimos cómo entrenar modelos de TensorFlow a gran escala con Vertex AI.
What's included
3 videos1 reading1 quiz1 app item
Este módulo es un resumen del curso TensorFlow on Google Cloud.
What's included
4 readings
Instructor
Offered by
Recommended if you're interested in Software Development
Google Cloud
Google Cloud
Google Cloud
Why people choose Coursera for their career
New to Software Development? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.