Machine learning systems used in Clinical Decision Support Systems (CDSS) require further external validation, calibration analysis, assessment of bias and fairness. In this course, the main concepts of machine learning evaluation adopted in CDSS will be explained. Furthermore, decision curve analysis along with human-centred CDSS that need to be explainable will be discussed. Finally, privacy concerns of deep learning models and potential adversarial attacks will be presented along with the vision for a new generation of explainable and privacy-preserved CDSS.

Entdecken Sie neue Fähigkeiten mit $120 Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Clinical Decision Support Systems - CDSS 4
Dieser Kurs ist Teil von Spezialisierung fĂźr Informed Clinical Decision Making using Deep Learning

Dozent: Fani Deligianni
Bei enthalten
Was Sie lernen werden
Evaluating Clinical Decision Support Systems
Bias, Calibration and Fairness in Machine Learning Models
Decision Curve Analysis and Human-Centred Clinical Decision Support Systems
Privacy concerns in Clinical Decision Support Systems
Kompetenzen, die Sie erwerben
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Information Privacy
- Kategorie: Machine Learning
- Kategorie: Human Centered Design
- Kategorie: Health Informatics
- Kategorie: Data Governance
- Kategorie: Healthcare Ethics
- Kategorie: Decision Support Systems
- Kategorie: Data Validation
- Kategorie: Predictive Modeling
- Kategorie: Deep Learning
- Kategorie: Verification And Validation
- Kategorie: Data Ethics
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂźgen
5 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂźhrender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
Adopting a machine learning model in a Clinical Decision Support System (CDSS) requires several steps that involve external validation, bias assessment and calibration, 'fairness' assessment, clinical usefulness, ability to explain the model's decision and privacy-aware machine learning models. In this module, we are going to discuss these concepts and provide several examples from state-of-the-art research in the area. External validation and bias assessment have become the norm in clinical prediction models. Further work is required to assess and adopt deep learning models under these conditions. On the other hand, research in 'fairness', human-centred CDSS and privacy concerns of machine learning models are areas of active research. The first week is going to cover the ground around the difference between reproducibility and generalisability. Furthermore, calibration assessment in clinical prediction models will be explored while how different deep learning architectures affect calibration will be discussed.
Das ist alles enthalten
4 Videos3 LektĂźren1 Aufgabe1 Diskussionsthema
Naively, machine learning can be thought as a way to come to decisions that are free from prejudice and social biases. However, recent evidence show how machine learning models learn from biases in historic data and reproduce unfair decisions in similar ways. Detecting biases against subgroups in machine learning models is challenging also due to the fact that these models have not been designed or trained to discriminate deliberately. Defining 'fairness' metrics and investigating ways in ensuring that minority groups are not disadvantaged from machine learning models' decisions is an active research area.
Das ist alles enthalten
3 Videos3 LektĂźren1 Aufgabe1 Diskussionsthema
Decision curve analysis is used to assess clinical usefulness of a prediction model by estimating the net benefit with is a trade-off of the precision and accuracy of the model. Based on this approach the strategy of âintervention for allâ and âintervention for noneâ is compared to the modelâs net benefit. Decision curve analysis is a human-centred approach of assessing clinical usefulness, since it requires expertsâ opinion. Ethical Artificial Intelligence initiative indicate that a human-centred approach in clinical decision support systems is required to enable accountability, safety and oversight while the ensure âfairnessâ and transparency.
Das ist alles enthalten
3 Videos3 LektĂźren1 Aufgabe1 Diskussionsthema
Deep learning models have remarkable ability to memorise data even when they do not overfit. In other words, the models themselves can expose information about the patients that compromise their privacy. This can results in unintentional data leakage in inference and also provide opportunities for malicious attacks. We will overview common privacy attacks and defences against them. Finally, we will discuss adversarial attacks against deep learning explanations.
Das ist alles enthalten
3 Videos3 LektĂźren2 Aufgaben1 Diskussionsthema
Erwerben Sie ein Karrierezertifikat.
FĂźgen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
University of Glasgow
- Status: Kostenloser Testzeitraum
University of Glasgow
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
LearnQuest
Warum entscheiden sich Menschen fĂźr Coursera fĂźr ihre Karriere?





Neue KarrieremĂśglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten â 100 % online
SchlieĂen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂźr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we donât give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle UnterstĂźtzung verfĂźgbar,