This course provides a hands-on journey into credit risk prediction using Python with a focus on logistic regression, decision trees, and ensemble methods. Learners will begin by outlining project workflows, importing data, and applying data preprocessing techniques such as handling missing values, encoding categorical features, and scaling numerical variables. Through exploratory data analysis (EDA), they will interpret data patterns and relationships to build stronger foundations for modeling.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Was Sie lernen werden
Preprocess financial datasets using encoding, scaling, and EDA techniques.
Build and tune logistic regression, decision trees, and Random Forest models.
Evaluate credit risk models with confusion matrices, ROC curves, and ensemble methods.
Kompetenzen, die Sie erwerben
- Kategorie: Exploratory Data Analysis
- Kategorie: Decision Tree Learning
- Kategorie: Random Forest Algorithm
- Kategorie: Applied Machine Learning
- Kategorie: Credit Risk
- Kategorie: Feature Engineering
- Kategorie: Financial Modeling
- Kategorie: Classification Algorithms
- Kategorie: Data Preprocessing
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Pandas (Python Package)
- Kategorie: Model Evaluation
- Kategorie: Predictive Modeling
- Kategorie: Statistical Machine Learning
- Kategorie: Logistic Regression
- Kategorie: Data Analysis
- Kategorie: Machine Learning Methods
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
In this module, learners gain a strong foundation in building a credit default prediction model using Python. The module introduces the project’s scope, outlines the workflow, and emphasizes the importance of structured data handling. Learners will explore data preprocessing techniques such as handling missing values, encoding categorical features, and scaling numerical variables. In addition, they will perform exploratory data analysis (EDA) to identify patterns, visualize distributions, and uncover key relationships within the dataset. Finally, learners will split the dataset into training and testing sets to ensure reliable evaluation of logistic regression models for predicting credit default risk.
Das ist alles enthalten
9 Videos3 Aufgaben
In this module, learners advance beyond data preparation into the core of predictive modeling. The module introduces evaluation metrics such as the confusion matrix and ROC curve to assess classification performance in credit default prediction. Learners will then explore hyperparameter tuning methods like Grid Search and Randomized Search to optimize logistic regression models. The module further builds knowledge with decision tree theory, covering splitting criteria, visualization using Graphviz, and practical implementation in Python. Finally, learners will apply ensemble techniques with Random Forest to reduce overfitting and improve model accuracy for robust credit risk prediction.
Das ist alles enthalten
10 Videos3 Aufgaben
Mehr von Data Analysis entdecken
Status: Vorschau
Status: Kostenloser TestzeitraumUniversity of Washington
Status: Kostenloser Testzeitraum
Status: Kostenloser TestzeitraumUniversity of Pennsylvania
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,





