Evaluate & Swap Models in Java ML is a practical course that teaches you how to measure, compare, and confidently replace machine learning models in Java applications. You’ll learn why high accuracy can still lead to failure in real-world systems, and how metrics like precision, recall, F1-score, and AUC-ROC reveal the real impact of model decisions, especially with imbalanced datasets. Through hands-on benchmarking in Weka or Smile, you’ll compare multiple algorithms—Logistic Regression, Decision Trees, SVMs—and analyze trade-offs based on business consequences, not just leaderboard results.

Evaluate & Swap Models in Java ML
Bald zu Ende: Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Evaluate & Swap Models in Java ML
Dieser Kurs ist Teil von Spezialisierung für Level Up: Java-Powered Machine Learning

Dozent: Karlis Zars
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Apply Java ML evaluation methods using metrics alongside cross-validation to measure real-world generalization and avoid overfitting.
Benchmark multiple Java ML algorithms on the same dataset to identify the optimal model.
Design swappable machine-learning components using interface-driven architecture and the Strategy Pattern.
Kompetenzen, die Sie erwerben
- Kategorie: Applied Machine Learning
- Kategorie: MLOps (Machine Learning Operations)
- Kategorie: Business
- Kategorie: Matrix Management
- Kategorie: Supervised Learning
- Kategorie: Data Preprocessing
- Kategorie: Java
- Kategorie: Machine Learning Software
- Kategorie: Software Design Patterns
- Kategorie: Decision Tree Learning
- Kategorie: Benchmarking
- Kategorie: Model Deployment
- Kategorie: Classification Algorithms
- Kategorie: Machine Learning Algorithms
- Kategorie: Model Evaluation
- Kategorie: Logistic Regression
- Kategorie: Business Metrics
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Januar 2026
1 Aufgabe
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module
This module establishes why choosing a model should be based on evidence, not assumptions. You’ll learn how accuracy alone misleads, and how metrics like precision, recall, F1, and AUC reveal the true strengths and weaknesses of a model. We introduce dataset splits and cross-validation to ensure performance you can trust beyond the training data. By the end, you’ll understand how to interpret evaluation results in real-world business terms and avoid hidden failure modes.
Das ist alles enthalten
4 Videos2 Lektüren1 peer review
This module moves from theory to applied evaluation. You’ll train and benchmark multiple ML algorithms in Java on the same dataset—Logistic Regression vs Decision Trees vs SVM—and observe how performance changes with data and task type. We break down confusion matrix insights from a user-impact perspective: which mistakes are acceptable, and which break the system. By the end, you will generate clear, comparable evaluation reports that support confident decision-making.
Das ist alles enthalten
3 Videos1 Lektüre1 peer review
This module shows how to build Java applications where ML models are replaceable components—not embedded code. Using interface-driven design and the Strategy Pattern, you’ll implement architecture that enables painless upgrades and rollbacks. We discuss model lifecycle checkpoints: re-evaluation triggers, monitoring for performance drift, and when to retire a model. By the end, you’ll be equipped with a safe and scalable approach to shipping and maintaining ML systems in production.
Das ist alles enthalten
4 Videos1 Lektüre1 Aufgabe2 peer reviews
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Machine Learning entdecken
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,




