Coursera
Harden AI: Secure Your ML Pipelines

Genießen Sie unbegrenztes Wachstum mit einem Jahr Coursera Plus für 199 $ (regulär 399 $). Jetzt sparen.

kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Coursera

Harden AI: Secure Your ML Pipelines

Hanniel Jafaru
Starweaver

Dozenten: Hanniel Jafaru

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

4 Stunden zu vervollständigen
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

4 Stunden zu vervollständigen
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Apply infrastructure hardening in ML environments using secure setup, IAM controls, patching, and container scans to protect data.

  • Secure ML CI/CD workflows through automated dependency scanning, build validation, and code signing to prevent supply chain risks.

  • Design resilient ML pipelines by integrating rollback, drift monitoring, and adaptive recovery to maintain reliability and system trust.

Kompetenzen, die Sie erwerben

  • Kategorie: Engineering
  • Kategorie: Vulnerability Scanning
  • Kategorie: AI Security
  • Kategorie: Compliance Management
  • Kategorie: AI Personalization
  • Kategorie: Model Evaluation
  • Kategorie: Hardening
  • Kategorie: Containerization
  • Kategorie: DevSecOps
  • Kategorie: Infrastructure Security
  • Kategorie: CI/CD
  • Kategorie: Continuous Monitoring
  • Kategorie: Threat Modeling
  • Kategorie: Security Controls
  • Kategorie: Responsible AI
  • Kategorie: MLOps (Machine Learning Operations)
  • Kategorie: Resilience
  • Kategorie: Identity and Access Management
  • Kategorie: Model Deployment
  • Kategorie: Vulnerability Assessments

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Dezember 2025

Bewertungen

1 Aufgabe

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

In diesem Kurs gibt es 3 Module

This module lays the foundation for securing machine learning systems by focusing on the underlying infrastructure that supports them. Learners will explore why strong security controls at the operating system, cloud, and container levels are essential for protecting sensitive ML workloads. Real-world breaches often start with overlooked vulnerabilities in servers, misconfigured storage buckets, or unsecured APIs, and this module provides the knowledge to prevent such entry points. Through theory, demonstration, and an interactive scenario, learners will gain the skills to harden ML environments, apply IAM best practices, and perform vulnerability scans that reveal weaknesses before attackers exploit them. By the end of this module, learners will understand how infrastructure hygiene directly impacts the integrity of ML models and data.

Das ist alles enthalten

5 Videos2 Lektüren1 peer review

This module builds on the infrastructure layer by addressing the unique risks found in machine learning build and deployment workflows. Continuous integration and continuous deployment (CI/CD) pipelines accelerate innovation, but they also introduce opportunities for adversaries to slip in malicious dependencies, poisoned data, or corrupted artifacts. Learners will study the anatomy of ML supply chain attacks and discover practical strategies to counter them, such as dependency scanning, code signing, and reproducible builds. The combination of theory, real-world case studies, and a hands-on demo will help learners see how insecure workflows can compromise entire AI systems. By the end of this module, participants will be able to design and implement CI/CD pipelines that embed security into every stage of model development and deployment.

Das ist alles enthalten

3 Videos1 Lektüre1 peer review

This module brings together infrastructure and workflow security into a forward-looking focus on resilience. No pipeline is immune to compromise or error, but resilient pipelines are designed to detect issues quickly, recover gracefully, and maintain trustworthiness under stress. Learners will study common compromise vectors in ML systems, from adversarial inputs to model drift, and then explore resilience strategies like rollback, redundancy, and drift monitoring. The demo illustrates how even a simple rollback can protect business continuity when a model misbehaves in production. The scenario-based dialogue challenges learners to think critically about balancing speed, reliability, and safety in real-world ML operations. By the end of this module, learners will understand how to engineer resilience into ML pipelines so that failures and attacks become manageable events rather than catastrophic disruptions.

Das ist alles enthalten

4 Videos1 Lektüre1 Aufgabe2 peer reviews

Dozenten

Hanniel Jafaru
Coursera
1 Kurs83 Lernende

von

Coursera

Mehr von Computer Security and Networks entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“

Häufig gestellte Fragen