University of Colorado Boulder
Introduction to Machine Learning: Supervised Learning

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
University of Colorado Boulder

Introduction to Machine Learning: Supervised Learning

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Explain and apply the core concepts of supervised learning.

  • Build, interpret, and evaluate predictive models for regression and classification.

  • Assess model reliability and improve generalization using validation and regularization techniques.

  • Apply tree-based and ensemble methods to capture complex relationships in data.

Kompetenzen, die Sie erwerben

  • Kategorie: Scikit Learn (Machine Learning Library)

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Januar 2026

Bewertungen

6 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung für Machine Learning: Theory and Hands-on Practice with Python
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 5 Module

Welcome to Introduction to Machine Learning: Supervised Learning. In this first module, you will begin your journey into supervised learning by exploring how machines learn from labeled data to make predictions. You will learn to distinguish between supervised and unsupervised learning, and understand the key differences between regression and classification tasks. You will also gain insight into the broader machine learning workflow, including the roles of predictors, response variables, and the importance of training versus testing data. By the end of this module, you will have a solid foundation in the goals and mechanics of supervised learning.

Das ist alles enthalten

12 Videos7 Lektüren2 Aufgaben1 Programmieraufgabe1 Diskussionsthema

In this module, you will expand your understanding of linear models by incorporating multiple predictors, including categorical variables and interaction terms. You will learn how to interpret partial regression coefficients and assess the fit of your models using metrics like R² and RMSE. As you build more complex models, you will also explore the risks of overfitting and the importance of model validation. By the end of this module, you will be equipped to build and evaluate multiple linear regression models with confidence.

Das ist alles enthalten

7 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe

In this module, you will transition from predicting continuous outcomes to modeling categorical ones. You will learn how logistic regression models binary outcomes, like whether a customer will default on a loan, using probabilities and odds, and how to interpret the results. You will also explore k-Nearest Neighbors, a flexible, non-parametric method that classifies observations based on their proximity to others in the dataset. To evaluate your models, you will use tools like confusion matrices, accuracy, and precision/recall, gaining insight into how well your classifiers perform. This module lays the groundwork for tackling real-world classification problems with confidence and clarity.

Das ist alles enthalten

13 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe

In this module, you will learn how to evaluate your models more reliably and improve their generalization to new data. You will explore resampling methods like k-fold cross-validation and the bootstrap, which help estimate test performance without needing a separate test set. You will also be introduced to the regularization techniques Ridge and Lasso that prevent overfitting by constraining model complexity. Using cross-validation, you will learn how to select the optimal regularization strength, balancing predictive accuracy with model simplicity. These tools are essential for building models that perform well not just in theory, but in practice.

Das ist alles enthalten

10 Videos2 Lektüren1 Aufgabe1 Programmieraufgabe

This module introduces you to one of the most intuitive and interpretable machine learning models: decision trees. You will explore how trees split the feature space into regions, how to read their structure, and why they are prone to overfitting if left unchecked. Trees are just the beginning; this module also introduces ensemble techniques that elevate predictive accuracy by combining many models. You will get a first look at methods like bagging, random forests, and boosting, and see how they compare to the models you have already studied. By the end, you will understand when and why tree-based models can outperform simpler approaches, especially in capturing complex, non-linear relationships.

Das ist alles enthalten

8 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Daniel E. Acuna
University of Colorado Boulder
3 Kurse94 Lernende

von

Mehr von Machine Learning entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen