This course introduces distributed computing frameworks and big data visualization techniques. Learners will explore MapReduce, work with Apache Spark, implement transformations with PySpark, and use Spark SQL for large-scale analysis. The course concludes with building compelling dashboards and reports using Power BI for actionable business insights.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Data Processing, Exploratory Analysis and Visualization
Dieser Kurs ist Teil von Microsoft Big Data Management and Analytics (berufsbezogenes Zertifikat)

Dozent: Microsoft
Bei enthalten
Kompetenzen, die Sie erwerben
- Kategorie: Performance Tuning
- Kategorie: PySpark
- Kategorie: Databricks
- Kategorie: Big Data
- Kategorie: Data Pipelines
- Kategorie: Dashboard
- Kategorie: Data Visualization Software
- Kategorie: Data Processing
- Kategorie: SQL
- Kategorie: Business Intelligence
- Kategorie: Query Languages
- Kategorie: Distributed Computing
- Kategorie: Apache Spark
- Kategorie: Power BI
- Kategorie: Data Transformation
- Kategorie: Self Service Technologies
- Kategorie: Interactive Data Visualization
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Data Analysis
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Microsoft zur Vorlage

In diesem Kurs gibt es 5 Module
Distributed Computing and MapReduce Concepts explores the foundational principles that enable modern organizations to process massive datasets that have outgrown the limits of single-machine computing. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine how data is broken into parallel tasks and executed across clusters of machines, how the Map, shuffle, and Reduce phases work together, and how common MapReduce patterns—such as counting, filtering, joining, and aggregation—solve practical big data problems efficiently and at scale.
Das ist alles enthalten
3 Videos3 Lektüren8 Aufgaben
Apache Spark Architecture and Fundamentals provides a comprehensive introduction to the distributed processing engine that revolutionized big data analytics by overcoming traditional MapReduce limitations. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine Spark's core components, including the driver, executors, and cluster manager, explore how in-memory processing delivers dramatic performance improvements, and learn to configure and manage Spark clusters and applications for efficient large-scale data processing.
Das ist alles enthalten
2 Videos3 Lektüren9 Aufgaben
Data Processing with PySpark RDDs and DataFrames focuses on practical data processing using PySpark's Python API for Apache Spark. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll implement data processing operations using both RDDs and DataFrames, develop transformation pipelines, apply common data cleaning and preparation techniques, and optimize PySpark code for better performance across enterprise-scale big data scenarios.
Das ist alles enthalten
3 Videos3 Lektüren10 Aufgaben
Advanced Data Processing with Spark SQL introduces Spark SQL as a powerful interface for structured data processing in distributed environments. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll master SQL operations at scale, from basic queries to complex analytical operations, learn to create and manage temporary views and tables, and optimize query performance for production workloads that would overwhelm traditional database systems.
Das ist alles enthalten
3 Videos3 Lektüren10 Aufgaben
Data Visualization for Big Data with Power BI introduces comprehensive visualization techniques specifically designed for big data environments using Microsoft Power BI. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll learn to connect Power BI to various big data sources, create effective visualizations for large datasets, build interactive dashboards that enable self-service analytics, and implement best practices for handling performance challenges when visualizing massive datasets.
Das ist alles enthalten
3 Videos3 Lektüren10 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Data Analysis entdecken
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.








