Ever wondered why your AI app sometimes “sounds smart” but fails when it matters? This course teaches you how to turn unpredictable Large Language Model (LLM) behavior into reliable, production-ready performance.This course is a fast, hands-on journey from prompt to production. You’ll learn to transform vague model outputs into precise, structured responses using advanced prompt engineering including role prompting, JSON-formatted replies, and self-critique loops. Then, you’ll build a robust API layer with caching, rate-limit handling, retries, and token budgeting for stability and cost efficiency. Finally, you’ll design an interface that gathers real user feedback ratings, flags, and clarifications turning every interaction into a learning loop. You’ll work with real tools like OpenAI API, FastAPI, React, Vercel AI SDK, and Postman, completing guided labs and an end-to-end project.

Genießen Sie unbegrenztes Wachstum mit einem Jahr Coursera Plus für 199 $ (regulär 399 $). Jetzt sparen.

Optimize & Interface LLM Apps Effectively
Dieser Kurs ist Teil von Spezialisierung für Build Next-Gen LLM Apps with LangChain & LangGraph


Dozenten: Starweaver
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Optimize LLM behavior using structured prompting, role assignment, and controlled output formatting.
Design scalable middleware to manage API requests, rate limits, caching, and token budgets for efficient LLM apps.
Create intuitive, user-centered interfaces that integrate feedback loops to continuously improve model responses and user trust.
Kompetenzen, die Sie erwerben
- Kategorie: OpenAI API
- Kategorie: LLM Application
- Kategorie: Middleware
- Kategorie: UI/UX Research
- Kategorie: Frontend Integration
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
1 Aufgabe
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module
This module explores how to transform vague or inconsistent LLM behavior into precise, controllable reasoning through advanced prompt design. Learners will uncover why even well-trained models “fail silently” - producing fluent but unreliable outputs - and learn how to diagnose and fix these issues systematically. By applying structured prompting methods such as chain-of-thought reasoning, JSON formatting, and role-based context setup, students will gain practical skills to optimize LLM performance without retraining the model. The module ends with a live demo in the ChatGPT API playground, showing how a few strategic prompt refinements can significantly improve factual accuracy and response consistency.
Das ist alles enthalten
4 Videos2 Lektüren1 peer review
This module dives into the engineering backbone of reliable LLM-powered applications - the API and middleware layer. Learners will understand how to interface effectively with LLM APIs by implementing rate limits, request retries, caching, and token cost control. Emphasis is placed on making LLM calls stable, scalable, and cost-efficient under production-like conditions. Real-world patterns are illustrated through examples in Python or Node.js, and the module concludes with a hands-on demo building a backend service that interacts robustly with the OpenAI API, ensuring consistent performance and predictable costs even under heavy user load.
Das ist alles enthalten
3 Videos1 Lektüre1 peer review
This module bridges technical design and user experience - showing how the interface directly shapes model effectiveness. Learners will discover how thoughtful UI elements such as clarification prompts, feedback sliders, and reasoning displays turn a static LLM into an adaptive, user-centered system. The lesson explores best UX patterns for chatbots, text generation tools, and intelligent search assistants, highlighting how human-in-the-loop feedback improves both model accuracy and trustworthiness. The demo guides learners through building a minimal React-based frontend that connects to the backend created earlier, visualizes responses dynamically, and incorporates live user feedback for iterative model improvement. This module emphasizes human-centered interaction design and adaptive UI patterns that enable continuous model learning and improved user trust.
Das ist alles enthalten
4 Videos1 Lektüre1 Aufgabe2 peer reviews
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
von
Mehr von Cloud Computing entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,


