Coursera
Optimize & Interface LLM Apps Effectively

Genießen Sie unbegrenztes Wachstum mit einem Jahr Coursera Plus für 199 $ (regulär 399 $). Jetzt sparen.

kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Coursera

Optimize & Interface LLM Apps Effectively

Starweaver
Karlis Zars

Dozenten: Starweaver

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

4 Stunden zu vervollständigen
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

4 Stunden zu vervollständigen
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Optimize LLM behavior using structured prompting, role assignment, and controlled output formatting.

  • Design scalable middleware to manage API requests, rate limits, caching, and token budgets for efficient LLM apps.

  • Create intuitive, user-centered interfaces that integrate feedback loops to continuously improve model responses and user trust.

Kompetenzen, die Sie erwerben

  • Kategorie: OpenAI API
  • Kategorie: LLM Application
  • Kategorie: Middleware
  • Kategorie: UI/UX Research
  • Kategorie: Frontend Integration

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Dezember 2025

Bewertungen

1 Aufgabe

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung für Build Next-Gen LLM Apps with LangChain & LangGraph
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module

This module explores how to transform vague or inconsistent LLM behavior into precise, controllable reasoning through advanced prompt design. Learners will uncover why even well-trained models “fail silently” - producing fluent but unreliable outputs - and learn how to diagnose and fix these issues systematically. By applying structured prompting methods such as chain-of-thought reasoning, JSON formatting, and role-based context setup, students will gain practical skills to optimize LLM performance without retraining the model. The module ends with a live demo in the ChatGPT API playground, showing how a few strategic prompt refinements can significantly improve factual accuracy and response consistency.

Das ist alles enthalten

4 Videos2 Lektüren1 peer review

This module dives into the engineering backbone of reliable LLM-powered applications - the API and middleware layer. Learners will understand how to interface effectively with LLM APIs by implementing rate limits, request retries, caching, and token cost control. Emphasis is placed on making LLM calls stable, scalable, and cost-efficient under production-like conditions. Real-world patterns are illustrated through examples in Python or Node.js, and the module concludes with a hands-on demo building a backend service that interacts robustly with the OpenAI API, ensuring consistent performance and predictable costs even under heavy user load.

Das ist alles enthalten

3 Videos1 Lektüre1 peer review

This module bridges technical design and user experience - showing how the interface directly shapes model effectiveness. Learners will discover how thoughtful UI elements such as clarification prompts, feedback sliders, and reasoning displays turn a static LLM into an adaptive, user-centered system. The lesson explores best UX patterns for chatbots, text generation tools, and intelligent search assistants, highlighting how human-in-the-loop feedback improves both model accuracy and trustworthiness. The demo guides learners through building a minimal React-based frontend that connects to the backend created earlier, visualizes responses dynamically, and incorporates live user feedback for iterative model improvement. This module emphasizes human-centered interaction design and adaptive UI patterns that enable continuous model learning and improved user trust.

Das ist alles enthalten

4 Videos1 Lektüre1 Aufgabe2 peer reviews

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozenten

Starweaver
Coursera
474 Kurse912.887 Lernende

von

Coursera

Mehr von Cloud Computing entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“

Häufig gestellte Fragen