This course provides a comprehensive and hands-on introduction to univariate time series modeling with a strong focus on ARMA (AutoRegressive Moving Average) techniques using EViews software. Designed for learners with foundational statistical knowledge, the course enables participants to apply, analyze, and evaluate key components of time series analysis, from identifying autocorrelation patterns to building and diagnosing ARMA models.

noch 5 Tage: Holen Sie sich einen Black Friday Boost mit $160 Rabatt auf 10.000+ Programme.Sparen Sie jetzt.


Kompetenzen, die Sie erwerben
- Kategorie: Statistical Hypothesis Testing
- Kategorie: Statistical Analysis
- Kategorie: Statistical Modeling
- Kategorie: Exploratory Data Analysis
- Kategorie: Plot (Graphics)
- Kategorie: Regression Analysis
- Kategorie: Data Analysis Software
- Kategorie: Time Series Analysis and Forecasting
- Kategorie: Predictive Modeling
- Kategorie: Correlation Analysis
- Kategorie: Statistical Methods
- Kategorie: Predictive Analytics
- Kategorie: Forecasting
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂĽgen
August 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂĽhrender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces learners to the fundamental concepts of univariate time series analysis using EViews. It begins with an overview of the principles and motivations behind modeling a single time-dependent variable and continues with hands-on demonstrations using examples and real data. Emphasis is placed on understanding and constructing correlograms, interpreting autocorrelation and partial autocorrelation plots, and diagnosing model suitability through estimation outputs. By the end of this module, learners will be equipped to apply core techniques in univariate time series modeling and interpret diagnostic results to guide model refinement.
Das ist alles enthalten
6 Videos3 Aufgaben
This module builds upon foundational time series concepts to guide learners through the estimation, interpretation, and validation of ARMA (AutoRegressive Moving Average) models using EViews. It emphasizes the significance of model coefficients, goodness-of-fit statistics, and diagnostic checks including correlograms and residual analysis. Through real-time demonstrations and estimation outputs, learners gain practical skills in refining time series models and ensuring their statistical adequacy for forecasting applications.
Das ist alles enthalten
6 Videos3 Aufgaben
Mehr von Data Analysis entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser TestzeitraumIllinois Tech
Status: Kostenloser Testzeitraum
Status: Vorschau
Warum entscheiden sich Menschen fĂĽr Coursera fĂĽr ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
SchlieĂźen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂĽr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle UnterstĂĽtzung verfĂĽgbar,


