Johns Hopkins University

Business Analytics with Excel: Intermediate to Advanced

il reste 3 jours ! Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Johns Hopkins University

Business Analytics with Excel: Intermediate to Advanced

Joseph W. Cutrone, PhD

Instructeur : Joseph W. Cutrone, PhD

Enseignant de premier plan

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Strategic Decision-Making
  • Catégorie : Business Process Modeling
  • Catégorie : Transportation Operations
  • Catégorie : Operational Analysis
  • Catégorie : Business Modeling
  • Catégorie : Process Optimization
  • Catégorie : Network Model
  • Catégorie : Business Analytics
  • Catégorie : Excel Macros
  • Catégorie : Microsoft Excel
  • Catégorie : Decision Making
  • Catégorie : Financial Modeling

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

janvier 2026

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Business Analytics with Excel
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable

Il y a 6 modules dans ce cours

In this module, we will learn quantitative modeling to help companies make better decisions and improve performance. In business analytics, we use big data to solve business problems and provide insights. Companies now have access to huge sources of data and better and faster algorithms and technology are now available to use huge data sets for statistical and quantitative analysis, predictive modeling, optimization and simulation. We will focus on optimization and study a wide range of applications in supply chain analytics, transportation analytics, retail sales, financial services, risk management, marketing and pricing analytics. We will learn how to build mathematical models. In simple terms, a mathematical model is a quantitative representation or idealization of a real problem. The purpose of a mathematical model is to represent the essence of a problem in a concise form, this representation might be phrased in terms of an algebraic model, a spreadsheet model, or a Python model.

Inclus

4 vidéos6 lectures3 devoirs

In this module, you will be introduced to network models, a foundational class of optimization models used extensively in business analytics, operations, and decision science. Many real-world business problems, such as supply chain design, transportation planning, project scheduling, and information flow, can be naturally represented as networks consisting of nodes and arcs. Understanding how to model and analyze these structures is a critical skill for any analytics professional. You will learn how to formulate and solve common network problems using Excel and Solver, with a focus on translating business contexts into clear, structured models. By the end of this module, you will be able to recognize when a business problem can be framed as a network model, build the corresponding Excel model efficiently, and use Solver to generate and interpret optimal solutions. These skills will prepare you for more advanced optimization techniques later in the course and provide immediately applicable tools for real-world analytics tasks.

Inclus

6 vidéos7 lectures3 devoirs

Many real-world business decisions involve choices that are fundamentally discrete: whether to open a facility, produce a product, or assign a resource. In these settings, traditional linear programming models are often insufficient because decision variables must take on whole-number or yes–no values. Integer Programming (IP) provides the analytical framework needed to model and solve these types of decisions rigorously. In this module, you will learn how to formulate and solve integer programming models using Microsoft Excel and Solver. Building on your prior experience with linear optimization, you will see how integer and binary decision variables allow you to capture operational realities such as indivisible production quantities, fixed setup costs, and coverage requirements. Through practical, business-focused examples, the module focuses on three core applications. You will begin with production planning models that incorporate integer decisions to ensure feasible and implementable production schedules. You will then study fixed cost manufacturing problems, where binary variables are used to model setup decisions and economies of scale. Finally, you will explore set covering models, a powerful class of integer programs used to determine the minimum-cost selection of options needed to meet coverage requirements, such as facility placement or service availability. By the end of this module, you will be able to translate complex business decisions into integer programming formulations, implement them in Excel, and interpret Solver output to support data-driven managerial decisions.

Inclus

4 vidéos5 lectures2 devoirs

This module introduces nonlinear programming as a modeling framework for solving optimization problems in which the objective function and/or constraints are nonlinear. Students will explore how nonlinear relationships arise in business applications such as pricing, revenue management, portfolio allocation, and resource utilization, and how these relationships influence both solution methods and managerial insight. Particular attention is given to issues of local versus global optima and the implications these have for decision-making. The module emphasizes practical implementation using Excel Solver, with a focus on the GRG Nonlinear algorithm. Students will learn how to formulate nonlinear models in Excel, configure Solver appropriately, interpret Solver output, and diagnose common modeling and convergence issues. Through applied examples and exercises, students will analyze sensitivity to key assumptions and assess the robustness and limitations of solutions obtained via GRG Nonlinear, preparing them to apply nonlinear optimization effectively in real-world business settings.

Inclus

3 vidéos4 lectures2 devoirs

This module extends and deepens the concepts and techniques introduced in Nonlinear Programming I, moving from single-objective nonlinear optimization models to richer, more realistic decision-making frameworks. Building on your understanding of nonlinear objective functions, constraints, and the use of Excel Solver, this module emphasizes applications where multiple objectives, risk–return trade-offs, and structured data relationships play a central role. A primary focus of the module is portfolio optimization, where nonlinear programming is used to minimize portfolio variance subject to return and allocation constraints. You will implement these models in Excel Solver, making use of matrix functions to compute variances. This reinforces both the mathematical structure of quadratic optimization problems and their practical implementation in a widely used analytics tool. The module then broadens the scope of nonlinear optimization to include goal programming and multi-objective decision making. You will examine situations in which competing objectives cannot be optimized simultaneously, introducing the concepts of Pareto optimality, trade-off curves, and efficient frontiers. You will explore how changes in priorities and constraints affect optimal solutions, providing insight into managerial and financial decision contexts where compromise and balance are essential.

Inclus

2 vidéos4 lectures1 devoir

This final assessment serves as a capstone for Business Analytics II, bringing together the core analytical tools and decision-making frameworks developed throughout the course. Students will analyze a realistic business case with competing objectives, requiring them to formulate, solve, and interpret optimization models using Excel Solver, including nonlinear and multi-goal programming approaches. The assessment emphasizes the complete analytics workflow: translating a business problem into a quantitative model, evaluating trade-offs and uncertainty through sensitivity or scenario analysis, and interpreting results in managerial terms. Students must justify assumptions, explain model limitations, and recommend a defensible course of action aligned with organizational priorities. Overall, the final assessment evaluates both technical proficiency and the ability to communicate analytic insights clearly, reflecting how advanced business analytics is applied in real-world decision-making contexts.

Inclus

1 lecture1 devoir

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeur

Joseph W. Cutrone, PhD

Enseignant de premier plan

Johns Hopkins University
28 Cours 674 334 apprenants

Offert par

En savoir plus sur Business Essentials

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.

Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’

Jennifer J.

Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’

Larry W.

Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’

Chaitanya A.

’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions

¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.