Production ML models failing your latency targets? Learn how to make them run 3-5x faster without losing accuracy. This course helps ML engineers and data scientists optimize neural network inference for real-world deployment—across mobile, edge, and cloud environments. If you face slow model inference, high infrastructure costs, or deployment constraints, this course provides practical solutions. You'll master profiling techniques to identify performance bottlenecks, apply quantization to cut precision requirements, and make smart trade-offs between speed, accuracy, and resource constraints. You'll learn to benchmark optimization techniques and select the right approach for deployment scenarios. You'll explore inference profiling and metrics, pruning strategies, and quantization methods. You'll practice with real-world cases—from streaming platforms to autonomous vehicles—using industry-standard tools like PyTorch Profiler, TensorRT, and pruning utilities.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Ce que vous apprendrez
Analyze inference bottlenecks to identify optimization opportunities in production ML systems.
Implement model pruning techniques to reduce computational complexity while maintaining acceptable accuracy.
Apply quantization methods and benchmark trade-offs for secure and efficient model deployment.
Compétences que vous acquerrez
- Catégorie : Project Performance
- Catégorie : Model Deployment
- Catégorie : Model Evaluation
- Catégorie : Keras (Neural Network Library)
- Catégorie : Convolutional Neural Networks
- Catégorie : Cloud Deployment
- Catégorie : Benchmarking
- Catégorie : Network Model
- Catégorie : Process Optimization
- Catégorie : Network Performance Management
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
In this module, learners will master profiling techniques to identify bottlenecks and understand the fundamental trade-offs in model inference optimization. You'll use industry-standard tools like PyTorch Profiler to diagnose where models waste time—whether in computation, memory bandwidth, or data transfer. By the end, you'll confidently analyze profiling data, prioritize optimization efforts, and establish performance baselines for production ML systems.
Inclus
4 vidéos2 lectures1 évaluation par les pairs
In this module, learners will master pruning techniques to reduce neural network complexity without sacrificing accuracy. You'll explore both structured and unstructured pruning approaches, implement them using PyTorch pruning utilities, and discover how to recover accuracy through fine-tuning and knowledge distillation. By the end, you'll confidently apply pruning to optimize models for resource-constrained environments like mobile devices and edge hardware.
Inclus
3 vidéos1 lecture1 évaluation par les pairs
In this module, learners will master quantization techniques to reduce numerical precision while maintaining model accuracy. You'll implement both post-training quantization and quantization-aware training using PyTorch, then compare quantization against pruning across speed, accuracy, and security dimensions. By the end, you'll understand how optimization choices affect adversarial robustness and confidently select the right technique for secure, high-performance deployments in mission-critical applications.
Inclus
4 vidéos1 lecture1 devoir2 évaluations par les pairs
Offert par
En savoir plus sur Machine Learning

Google Cloud

DeepLearning.AI
Statut : Essai gratuitGoogle Cloud
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,




