Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems.
Practical Predictive Analytics: Models and Methods
Ce cours fait partie de Spécialisation Data Science at Scale
Instructeur : Bill Howe
37 829 déjà inscrits
Inclus avec
(320 avis)
Compétences que vous acquerrez
- Catégorie : Random Forest
- Catégorie : Predictive Analytics
- Catégorie : Machine Learning
- Catégorie : R Programming
Détails à connaître
Ajouter à votre profil LinkedIn
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
Learn the basics of statistical inference, comparing classical methods with resampling methods that allow you to use a simple program to make a rigorous statistical argument. Motivate your study with current topics at the foundations of science: publication bias and reproducibility.
Inclus
28 vidéos
Follow a tour through the important methods, algorithms, and techniques in machine learning. You will learn how these methods build upon each other and can be combined into practical algorithms that perform well on a variety of tasks. Learn how to evaluate machine learning methods and the pitfalls to avoid.
Inclus
26 vidéos1 lecture1 devoir
You will learn how to optimize a cost function using gradient descent, including popular variants that use randomization and parallelization to improve performance. You will gain an intuition for popular methods used in practice and see how similar they are fundamentally.
Inclus
11 vidéos
A brief tour of selected unsupervised learning methods and an opportunity to apply techniques in practice on a real world problem.
Inclus
4 vidéos1 évaluation par les pairs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Coursera Instructor Network
LearnQuest
Stanford University
University of California San Diego
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 320
320 avis
- 5 stars
48,43 %
- 4 stars
30,93 %
- 3 stars
9,68 %
- 2 stars
5,31 %
- 1 star
5,62 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.